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Abstract

As part of the proseminar in theoretical physics on out of equilibrium physics,
I chose to speak about turbulence. Due to the problem’s difficulty, approaches are
mostly of statistical nature and results from first principle remain elusive. The treat-
ment here is separated into fully developed turbulence, where Kolmogorov theory is
most established, and the transition to turbulence, where a modeling approach to
find universality is studied. It is the goal throughout to find hints of universality.
In Kolmogorov’s theory for developed turbulence, I derive the famous p/3 and −5/3
scaling laws from Kolmogorov’s hypotheses. I discuss its limits from experimental
disagreements and explore a possible adjustment of the scaling laws. Considera-
tion of complete and incomplete similarity arguments leads to an anomalous scaling
and the scale interference of large length scales, thereby complicating the search for
universality. A possible reconciliation is motivated via the comparison to critical
phenomena, where a similar problem of scale interference was solved by the renor-
malization group approach. For the transition to turbulence, I discuss experimental
results and observations of puff dynamics. Puff decay and puff splitting resemble the
nature of population decay and splitting in predator-prey dynamics. Ultimately, I
motivate the identification of the phenomenon with the universality class of directed
percolation, a universality class of out of equilibrium phase transitions. Hence, a
sense of universality and simple scaling is established for the onset of turbulence.
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1 Introduction

Throughout this treatment we will be concerned with the behaviour of fluids, categorized in
the field of fluid dynamics. The governing equation of fluids is the Navier-Stokes equation.
It is an approximation of Newton’s second law, F = ma, following a promotion of a
particle description u(t) to a field description u(x, t) by letting the number of particles in
a volume of interest go to infinity. A general force F in such a field is typically dissected
into a pressure gradient, ∇p, a viscous stress, µ∇2u (µ: dynamic viscosity) and body
forces, ρf . Using the Lagrange derivative, Du

Dt
= ∂u

∂t
+(u ·∇)u, the Navier-Stokes equation

is written as

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ µ∇2u+ ρf , (1)

where note that mass m was promoted to a notion of density ρ within the field description.
Roughly, a fluid’s flow is classified as being of laminar or turbulent nature. Laminar flow is
characterized as being smooth and non-mixing with a parallel stream line profile. Laminar
flow is a steady and stationary state. Typically, approximate laminar flow is observed from
the water tap for low stream intensities, in mean flows of river channels or in pipes at low
flow velocities. For increasing flow velocities, Reynolds famously observed fluid flows to
become more and more chaotic (Reynold’s pipe flow experiment 1883). This chaotic flow
of a fluid is what is generally called turbulence. It is generally the state of fluids much more
abundantly observable in nature than laminar flow, e.g. in the swirly movement of ocean
dynamics or in the diffusive motion of a stirred cup of coffee. Turbulent flow is a highly
out-of-equilibrium phenomenon, changing vastly with time and consisting of intermittent
fluctuations.

Turbulence is of great interest in many fields of research: in mechanical engineering, where
it is the reason for amplifying drag in aerodynamics - in medicine, where turbulent blood
flow is thought to lead to aneurysm - in earth sciences, for weather and climate predictions -
in pure mathematics, where the search of general closed-form solutions to the NS equations
is part of a millenium problem - and of course in physics, where its abundance in nature
aches for a universal description. However, the phenomenon of turbulence has long proven
to be resistant to quantitative studies. Famous quotes from great physicists (Feynman,
Heisenberg and more) promote the idea of it being the last unsolved problem of classical
physics. To which extent it is unsolved or what it would mean to solve turbulence is a
philosophical debate of its own. Roughly speaking, turbulence misses a theory from first
principles built on a general, closed-form solution of the NS equation. Such a solution is
difficult to find due to the non-linear (highly interacting) nature of the equation. Hence, to
this date theories are based on statistical approaches and often lack full conclusive strength.

I will present the standard approach in section 2, which encapsulates the most established
theory related to turbulence, called Kolmogorov Theory, which is a description of fully
developed turbulence. In section 2.4, I will illustrate a connection of turbulence to the
field of critical phenomena. Based on that, I will introduce approaches to the onset of
turbulence by means of out-of-equilibrium statistical physics in section 3.
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2 Fully Developed Turbulence

This section is largely based on the book ’Turbulence and the Legacy of A.N. Kolmogorov
(1995)’ by Uriel Frisch [1].

2.1 Reynolds Number

As mentioned in the general introduction above, the governing equation of turbulent flow
(and fluid flows in general) is the Navier-Stokes equation 1. An important characterizing
parameter of the NS equation and one encountered throughout the discussion around
turbulence is the so-called Reynolds number Re. Qualitatively it is a ratio of inertial forces
to viscous forces. The Reynolds number is a non-dimensional quantity defined by non-
dimensionalizing the NS equation. Each term in the NS equation has units of a body force,
i.e. force per unit volume. To reach a non-dimensional form, we multiply the equation
with a term of inverse units containing characteristic system scales, e.g. L

ρV 2 , where L is
a characteristic length sale and V is a characteristic velocity. Defining non-dimensional
quantities as u0 =

u
V
, p0 =

p
ρV 2 , f0 = f L

V 2 ,
∂
∂t0

= L
V

∂
∂t

and ∇0 = L∇, we can rewrite the NS
equation as

ρ
Du

Dt
= −∇p+ µ∇2u+ ρf

non−dim−−−−−→ Du0

Dt0
= −∇0p0 +

1

Re
∇2

0u0 + f0,

where Re := LV
ν

and ν = µ
ρ
is the kinematic viscosity.

The battle of inertial to viscous forces is a key player in the differentiation between lami-
nar and turbulent flow. In laminar flow, viscous stress between different layers of the fluid
dampen fluctuations that dance out of line any present mean flow resulting in a parallel
stream profile. As the fluid’s velocity, V , (or the system’s length scale L) increases, iner-
tial effects start to dominate viscous effects and fluctuations spread without considerable
dampening resulting in a turbulent flow field. Quantitatively, this battle can be related to
the fact that as Re → ∞ the viscous term in the NS equation becomes negligible and the
non-linear, interacting nature of the equations gain importance.

2.2 Energy Cascade

In 1922, Lewis Richardson published a book[2], where he wrote about his efforts towards
weather prediction. In it you will find qualitative analysis of the behaviour of a fully
turbulent fluid. He noticed that turbulent regions tend to dissipate back into a laminar
state if not continually injected with external energy (s.a. a hand whirling in a pool of
water). He then imagined an idealized steady state in a bounded volume, where fully
turbulent flow would be sustained by a mean external energy injection ϵin acting against
and compensating the energy dissipation rate ϵdiss = ϵin = ϵ. In this setup, Richardson then
formulated the fundamental idea of an energy cascade: The injected energy turns over into
eddies comparable to the system’s scale (called integral scale, e.g. the diameter of a coffee
cup, or the depth of the sea), which carry most of the injected kinetic energy. Somewhere
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down the line this kinetic energy will be converted into thermal energy, when the eddy
sizes are comparable to the molecular scale (called Kolmogorov scale). Richardson then
postulated that intermediate length scales (called inertial scale) feel no direct forcing of
the large scale, and do not interact significantly with the molecular scale. There, eddies
interact only with eddies of similar size, leading to a non-dissipative cascade of larger eddies
to smaller eddies. Richardson [2] summarized the qualitative analysis in a poem (adapted
from ’Siphonaptera’ by Augustus de Morgan):

’Big whirls have little whirls
that feed on their velocity,

and little whirls have lesser whirls
and so on to viscosity.’

It is this idea of a non-dissipative, cascading intermediate (inertial) range that is most out
there and serves as the intuitive guess we see at the start of many theories in physics.

2.3 Kolmogorov Theory

In 1941, it was Kolmogorov [3] who quantified the qualitative energy cascade observation
of Richardson by formulating three hypotheses in the large Reynolds number limit (i.e.
the inertia dominated, turbulent regime). I will restate the hypotheses and harvest their
qualitative and quantitative consequences step by step.

Hypothesis 1: On sufficiently small scales, the velocity field of turbulence is isotropic.

In other words, eventhough the large scale fluctuations usually are strongly anisotropic (due
to different boundary influences and mean flows), Kolmogorov presumed that the smallest
fluctuations of the flow anywhere in the flow field look the same (homogeneous) and that
furthermore a ficticious observer at these small scales could not discern any direction from
another when turning their head (isotropy). Note that this loss of larges scale geometrical
information quantifies a first notion of universality, meaning that perhaps turbulent flows
in different geometrical setups could show similar behaviour.

Hypothesis 2: On small scales and high Re, statistical properties are uniquely and uni-
versally determined by the length scale l, the mean dissipation rate (per unit mass) ϵ and
the viscosity ν.

Roughly, small scales means that the respective length scales l should be much smaller that
the size of the geometry Λ, i.e. l << Λ. We quantify the notion of sufficiently small scales
further by constructing a length scale ηK solely from ϵ and ν via dimensional considerations,
i.e. ηK = F (ϵ, ν) (for F some function). The dimensions of the energy dissipation rate
and kinematic viscosity are [ϵ] = V 2/T = L2/T 3 and [ν] = L2/T , respectively. Then, the
so-called Kolmogorov length scale is defined by combining powers of ϵ and ν, such that the
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multiplication results in units of length:

ηK ∼
(
ν3

ϵ

)1/4

. (2)

Note, that for decreasing viscosity or increasing energy injection rate (i.e. increasing Re)
these small scales become smaller and smaller compared to the fixed, large scale geometry.
Hence, for increasing Reynolds numbers the intermediate, inertial scales spread over a
larger and larger range.

Similarly, we can construct a characteristic quantitity for the velocity fluctuations uK on
small length scales (i.e. small eddies), also called the Kolmogorov velocity. From the
hypothesis, we make the Ansatz that the fluctuations are a function of only ϵ and ν, i.e.
uK = F (ϵ, ν). From dimensional analysis, we arrive at the expression

u ∼ (ϵν)1/4 . (3)

The corresponding, characteristic Reynolds number for this small scale regime of length
scale ηK and small velocity fluctuations u (i.e. small eddies),

ReK =
ηKuK

ν
∼ 1,

where we insert the expression for ηK and uK . By construction, this indicates that at these
small scales viscous effects are no longer negligible compared to the inertial effects, thus
encapsulating the idea of dissipation at the Kolmogorov scale.

Hypothesis 3: On small scales and infinite Re, all statistical properties are uniquely and
universally determined by the length scale l and the mean dissipation rate (per unit mass)
ϵ.

Note the subtle difference of infinite Re instead of ’large’ Re. This implicit limit will concern
us further down the road. For now, it merely imposes an additional condition on the range
of permitted length scales l. Namely, the limit Re → ∞ leads to an ever decreasing
Kolmogorov length ηK , where energy is dissipated. Since the geometry size Λ is fixed, the
respective length scales l implied by the hypothesis lay in the range ηK << l << Λ.
Generally, statistical properties (as mentionned in hypotheses 2 & 3) are summarized
special functions of a systems fluctuations. These functions are called structure functions
Sp of order p (also called moments)

Sp(l) = ⟨∆u(l)p⟩, (4)

where ∆u(l) = u(r + l)− u(l) are fluctuations in the velocity field on a length scale l and
⟨⟩ is an appropriate average (ergodic, temporal, spatial).

Translating the hypothesis, we make an Ansatz for Sp only to depend on the respective
length scale l and the mean energy rate ϵ

Sp ∼ ϵαlβ.
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The dimensions of the structure function are [Sp] = [(∆u)p] = V p =
(
L
T

)p
. By dimensional

analysis, we can determine the exponents α and β and arrive at a scaling relation for Sp,

Sp ∼ ϵp/3lp/3.

This relation is what is often called Kolmogorov’s K41 law.
We can rewrite this relation in order to arrive at one of the most famous results of turbu-
lence. We can rewrite fluctuations on a length scale l by its Fourier pendant, i.e. fluctua-
tions of corresponding wavelengths k = 1/l. The K41 law can then be rewritten as

Sp ∼ ϵp/3k−p/3.

Note, that the structure function of 2nd order, S2, is just the mean kinetic energy E in
fluctuations up to wavelengths k (see Eq. 4). We define the spectrum E(k) of kinetic
energy per wavelength k as

E =

∫
E(k) dk.

Using the K41 law, we can write a relation for the energy spectrum by accounting for
another dimension of k in the dimensional analysis:

E(k) ∼ 1

k
S2 ∼ ϵ2/3 k−5/3

This result is called Kolmogorov’s 5/3-law.

However, numerical simulations of the NS equations show deviations from the K41 scaling
law (see fig. 1).

We see that the prediction for exponent for the 2nd order structure function is very close
to the values from simulations. Hence, the 5/3 law is very close to the truth, which
is why it has been proven so valuable in a variety of engineering applications and has
gained the mentioned fame status. The fact that the exponents differ from Kolmogorov’s
predictions for high order structure functions hints at some ignorance in the formulation
of Kolmogorov’s hypotheses. To gain quantitative insight, a quick excursion to introduce
the concept of similarity is needed.

Interlude: Similarity1.

Any physically significant relationship can be written as a quantity a being a function of
governing and non-governing parameters, ai and bi,

a = f(a1, ..., ak, ..., b1, ..., bm). (5)

A result from dimensional analysis called the Π-theorem states that any such physical law
can be rewritten in non-dimensional form

Π = Φ (Π1, ..., Πm) , (6)

1This interlude is largely based on the book ’Scaling ’ by G. Barrenblatt [5]
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Figure 1: Value of the exponent ζp in the scaling law Sp ∼ (ϵl)ζp . The dotted line
corresponds to the K41 prediction that ζp = p/3. The purple squares, red circles and
green triangles represent values measured from direct numerical simulations of the NS
equation. The deviation from the K41 value is what is often called anomalous scaling.

(R. Benzi, U. Frisch (2010) [4]

where Π = a
ap1···ark

and Πi = bi
a
pi
1 ···arik

. Intuitively, the theorem quantifies that physically

significant laws should not depend on a choice of units. Combining eq. 5 and 6, we can
write

f(a1, a2, ..., b1, b2, ...) = ap1 · · · arkΦ(
b1

ap11 · · · ar1k
, ...,

bm
apm1 · · · armk

), (7)

which is sometimes called the condition of generalized homogeneity.

Definition (Complete Similarity)
Taking the limit of Πt+1, ..., Πm → 0 or ∞, we say a law obeys complete similarity
iff the function Φ is finite-valued in the respective limit, i.e.

lim
Πt+1,...,Πm→ 0 or ∞

Φ(Π1, ..., Πm) = C Φ̃(Π1, ..., Πt),

where C is a constant.

Definition (Incomplete Similarity)
Taking the limit of Πt+1, ..., Πm → 0 or ∞, we say a law obeys incomplete similarity
iff the function Φ is vanishing or singular in the respective limit and then we to write
the dependencies as power laws

lim
Πt+1,...,Πm→ 0 or ∞

Φ(Π1, ..., Πm) = Π
αt+1

t+1 · · · Πam
m Φ̃(Π1, ..., Πt).
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Qualitatively, a law is completely similar under Πt+1, ..., Πm if we can neglect the param-
eters Πt+1, ..., Πm for big or small enough values. Conversely, it is incompletely similar if
the law still depends on the parameters Πt+1, ..., Πm even in their respective asymptotics.
The notions of complete and incomplete similarity are also tightly connected and often
referred to interchangeably as scale invariance and scale interference, respectively.

Kolmogorov Revisited

We take another look at Kolmogorov’s approach to the energy cascade, while keeping an
eye for implicit assumption of similarity. In general (before using any of Kolmogorov’s
hypotheses), starting out at the largest, integral scale we include all possible dependencies
for the statistic properties. That includes the respective length scale of a particular eddy,
l, the viscosity ν, the size of the geometry Λ and the energy injection/dissipation rate ϵ.
In other words, Sp is a function of l, ν, Λ and ϵ:2

Sp = f(l, ηK , Λ, ϵ), (8)

where we capture the ν dependency in the Kolmogorov length scale ηK =
(

ν3

ϵ

) 1
4
. We

can identify the above expression with the one for a general physical law in the previous
interlude, eq. 5. Invoking the Π-theorem, 6, we write the above in the form of generalized
homogeneity, 7,

Sp = ϵp/3lp/3Φ

(
l

ηK
,
l

Λ

)
.

Kolmogorov’s second and third hypotheses include two limits. The second hypothesis is
a statement in the regime of small scales, l << Λ. This is restated as a limit l

Λ
→ 0.

Furthermore, the second hypothesis states that in this limit, Sp only depends on l, ν and
ϵ. Looking at the above equation, we translate this statement into

lim
l/Λ→0

= ϵp/3lp/3C1Φ

(
l

ηK

)
,

i.e. that the limit is finite valued and hence it is implicitly assumed that Sp obeys complete
similarity under the parameter l

Λ
.

The third hypothesis is a statement in the regime of small scales and infinite Re, i.e. Re
→ ∞, which is equivalent to the limit l

ηK
→ ∞. Furthermore, the third hypothesis states

that in this limit, Sp only depends on l and ϵ. We again translate this statement into the
above equation, i.e.

lim
l/ηK→∞, l/Λ→0

Sp = ϵp/3lp/3C1C2.

Note that Sp ∼ ϵp/3lp/3 is equivalent to saying Sp = C ϵp/3lp/3 for some constant C (in
this case C = C1C2). Again, the above hypothesis assumes a finite-valued limit of Sp for

2Of course, these dependencies are still highly debatable and already represent a form of assumption
and approximation. But to illustrate a limit of Kolmogorov’s assumptions, this Ansatz suffices.
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l
ηK

→ ∞ hence that Sp is completely similar under the parameter l
ηK

.
We therefore realize that the Kolmogorov hypotheses implicitly imply complete similarity
in both parameters.

As simulations show a deviation from the K41 prediction, it remains to identify which
of the limits fails to behave under complete similarity. Qualitatively, the first limit can
be read as a notion of scale invariance on small scales, meaning the flow field on small
scales does not depend on the large scale geometry Λ. The second limit reads as the fluid
(or spec. its statistical properties) becoming essentially inviscid for infinite Re. From
the introductory discussion around the Reynolds number, we know that based on the
NS equation the approximation of a fluid to be inviscid in the limit of infinite Reynolds
numbers is reasonable. This fact is also well supported by experimental and numerical
results. Commonly, it is the first limit of length scale invariance that is accused of being
incompletely similar. Following the interlude on similarity, we need to account for this
incomplete similarity by writing the first limit as

lim
l/Λ→0

Sp = ϵp/3lp/3
(

l

Λ

)θ

Φ

(
l

ηK

)
.

Then invoking the completely similar second limit, we get

lim
l/Λ→0, l/ηK→∞

Sp = ϵ
p
3 l

p
3
+θ Λ−θ C2,

where θ is called the anomalous scaling. This anomalous exponent can be compared to the
offset from the K41 prediction in fig. 1.
To conclude, we see that the system retains a sense of ’memory’ of the large scale geometry
Λ even on its small scales. This seemingly destroys our efforts to reach universality, meaning
results independent of specific system geometry. There are a variety of approaches and
active research to this date to include the anomalous scaling in the theory and restore
universality. Rigorous and suitable techniques to derive such results from first principles
are still to be found.

2.4 A Similar Story: Critical Phenomena

This section is largely based on the lecture notes by Prof. Mehran Kardar (MIT) on
’Statistical Mechanics II ’ [6].

In this section, I will outline the history of studies related to critical phenomena and show
how a lot of its developments resemble steps we’ve found in the above discussion around
Kolmogorov’s theory of turbulence.

The field of critical phenomena is concerned with the study of phase transitions. Well-
known examples of phase transitions are the liquid-gas transition or the paramagnetic-
ferromagnetic transition. Such phase transitions are characterized by an order parameter,
which is a physical observable that is usually vanishing in one phase and non-zero in the
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other phase (e.g. the magnetization m for the para-ferro transition). Furthermore, the
transition is characterized by a control parameter by which we move between two phases
(e.g. the temperature T for the para-ferro transition). We call the point, where the
order parameter changes from zero to a non-zero value the critical point (e.g. the critical
temperature TC for the para-ferro transition).

Assigned with the task of developing an according theory one would definitely be over-
whelmed, as we would have to cope with the quantum complexity of a huge amount of
interacting microscopic particles. However, the mere fact that we observe ’phases’, i.e.
collective ordered states of these particles, hints at the fact that perhaps sometimes a
microscopic description is not necessary. Observational experience shows that these mi-
croscopic particles start to move collectively as a phase transition is approached (e.g. in
the effect of critical opalescence). This collective behaviour indicates the presence of long
wavelength fluctuations rendering the microscopic details unnecessary. Instead of trying to
trace every detail and degree of freedom during a phase transition, Landau and Ginzburg
proposed to focus on this long-ranged behaviour of particles.

Landau-Ginzburg Theory

Based on the above motivation, Landau and Ginzburg simplified the microscopic problem
by replacing the magnetization m stemming from each particle by a coarse-grained field
ϕ(x). In other words, the field ϕ(x) only allows for slowly varying, long wavelength fluctua-
tions. Together with symmetry arguments (locality, rotational symmetry and translational
symmetry), they proposed an effective form for the system’s free energy

βF =
t

2
ϕ2 + uϕ4 + ...+

K

2
(∇ϕ)2 + ...− h · ϕ.

From the free energy, a series of scaling laws for the thermodynamic properties near the
critical point can be derived. For example, the magnetization in the para-ferro transition is
predicted to scale as m ∼ |t|1/2 with temperature (t = 1− T

TC
is the reduced temperature).

However, numerical simulations (and exact solutions like the Onsager solution for the Ising
model in 2D) do not agree with the scaling exponent of value 1

2
.

Similarly, Ginzburg-Landau theory gives a prediction for the scaling of the correlation
function

⟨ϕ(x)ϕ(y)⟩ ∼ |x− y|−(d−2),

which also disagrees with numerical simulations and shows an anomalous exponent θ.
The origin of this deviance can be formulated in the scheme of similarity, like we did for
Kolmogorov’s theory of turbulence.
The units of the correlation function are L−(d−2). The condition of generalized homogeneity
for this case is

⟨ϕ(x)ϕ(y)⟩ = |x− y|−(d−2)Φ

(
|x− y|

a

)
,
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where the initial dependence on the microscopic scales a is included. The act of coarse
graining can be rewritten into the limit |x−y|

a
→ ∞. Ginzburg-Landau theory then implic-

itly assumes a finite-valued limit of Φ in this limit. s.t.

lim
|x−y|

a
→∞

⟨ϕ(x)ϕ(y)⟩ = C |x− y|−(d−2).

The experimental denial and introduction of an anomalous exponent hints at the fact that
the function behaves incompletely similar, s.t.

lim
|x−y|

a
→∞

⟨ϕ(x)ϕ(y)⟩ = |x− y|−(d−2)

(
|x− y|

a

)θ

= |x− y|−(d−2)+θa−θ,

and a memory on the microscopic length scales is retained even on large scale fluctuations.

The reconciliation and explanation of universality in the case of anomalous scaling came
eventually with the renormalization group approach introduced by Kenneth Wilson
in 1982. It is an approach that embraces the fact that in certain problems (like criti-
cal phenomena) fluctuations persist out to macroscopic wavelengths, where furthermore
fluctuations on all intermediate length scales remain important too. The strategy of the
approach is to tackle each length scale, step by step. For critical phenomena, this means
carrying out statistical averages over thermal fluctuations on the atomic scale and then
moving to successively larger scales until fluctuations on all scales have been averaged
out[7].

From the discussion of Kolmogorov’s theory, we realize that turbulence is a problem of
similar nature, where the macroscopic length scale and all intermediate length scales still
remain important on small scales. Finding a renormalization group-like approach to se-
quentially tackle fluctuations on all length scales in turbulence is part of ongoing research,
but conclusive results have yet to be found.
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Figure 2: Experimental setup of Hof’s experiment [9]. It consists of a pipe connected to a
fluid reservoir (to the left) of length L with a controlled access to introduce a disturbance

to the fluid flow. A binary measurement of the death or survival of a puff is done by
measuring the fluid’s outflow velocity at the pipe’s outlet.

3 Transition to Turbulence

This section is largely based on the paper ’Turbulence as a Problem in Non-Equilibrium
Statistical Mechanics ’ by N. Goldenfeld et al. [8].

The systematic study of the transition to turbulence started with the famous pipe exper-
iment by Reynolds in 1883. As he increased the fluid’s flow velocity through the pipe, he
observed a higher and higher occurance of ’flashes’ of turbulent regions, now called puffs.
This transition would run smoothly with increasing flow velocity until a fully turbulent
flow region occupied the pipe. We could try to connect the turbulent transition to the
notion of a critical phenomenon. We could identify the order parameter of the system
by the turbulent fraction (i.e. the amount of turbulent compared to laminar regions) and
further use the Reynolds number as the control parameter. A question that arises and to
which I show a potential answer in the next section, is where to define the critical value of
the Reynolds number in such a critical phenomenon.

3.1 Lifetime & Splitting of Puffs

Notable progress in the study of the transition to turbulence came from Hof’s experiment
[9] in 2008. He continued the study of the emergence of the above mentionned puffs in
a sophisticated version of Reynold’s pipe experiment. The setup (see fig. 2) is a pipe
of length L connected to a reservoir, where the fluid’s supply and velocity is controlled.
Furthermore, there is a point of access at the pipe to introduce a controlled disturbance,
i.e. a puff.

By measuring the fluid’s outflow velocity at the pipe’s ending, Hof was able to perform a
binary measurement of wether the introduced puff survived until the end or died on the
way. By doing lots of repetitions of such an experiment while also varying the flow velocity
(Reynolds number Re) and the pipe length L, Hof arrived at a probability distribution
P (Re, L) (see fig. 3). The graph reads as the probability of survival P for a given Reynolds
number Re and length of pipe L (labeled t in the graph).

The e-fold lifetime τ(Re) of this probability function P (Re, t) = e
t

τ(Re) is plotted in the
graph on the right in fig. 3. Fitting the graph, it turns out the lifetime behaves as a
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Figure 3: (left) The probability of survival for a variety of Reynolds numbers (portrayed
by different shapes) and length of the pipe (here translated into a notion of time t). The
e-fold lifetime of this distribution can be plotted as the lifetime of a puff (right, decaying
turbulence). Similarly, measurements of splitting puffs lead to the graph on the mean

time between splitting events of puffs. (Hof et al. 2011 [10])

superexponential function of Re, τ ∼ ee
Re
. At this point, it almost seems hopeless to search

for a notion of critical Re, since it seems like a fully turbulent regime would never stabilize.
With increasing Reynolds number puffs will live (super)exponentially longer. However, if
one waits long enough it would always decay. The answer to this problem comes from a
second observation Hof made, which is the splitting of puffs. He found, that at high enough
Reynolds numbers single puffs started to infect laminar regions close to them leading to
new, ’baby’-puffs evolving independently from the ’mother’ puff. This phenomenon is called
puff splitting. Similar to before, Hof measured the second graph portrayed on the right of
fig. 3 corresponding to the mean time between splitting events of puffs. He arrived at the
result that the time between splitting events decreased superexponentialy for increasing
Reynolds number. Now, we are presented with a possibility of defining a critical Reynolds
number, namely the intersecting point between the lifetime of puffs and the mean time
between splitting events of puffs. The justification for this choice is that to the left of this
point it is more likely for a puff to decay than for it to split, while to the right of the point
it is more likely for a puff to split than for it to decay leading to an ever growing region of
turbulence.

3.2 Predator-Prey Dynamics and Directed Percolation

N. Goldenfeld [11] realized that a second phenomenon he was working on, predator-prey
population dynamics of biophysics, showed similar behaviour to the effects discussed above.
Isolated populations of predator and prey arise and collapse after some time. They tend
to survive longer and longer for increasing birth rates, pendant to the lifetime of puffs for
increasing Reynolds numbers. Furthermore, for high enough birth rates such populations
start splitting into seperate, independent populations. The modeling of this behaviour
leads to the same superexponential scaling found for puffs in turbulence (see fig. ??).
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Figure 4: Simulated results for the lifetime of predator-prey populations before ecological
collapse and mean time between splitting events of populations (right) compared to the
previous data of puff lifetime and puff splitting (left). Both sets of data show exponential

scaling in the two effects. (Goldenfeld et al. 2015 [11])

The realization of this interplay is a manifestation of a deeper connection made already
in 1989 by Y. Pomeau [12]. Namely, the connection to the out-of-equilibrium universality
class of directed percolation in statistical physics.
Directed percolation is a continuous phase transition commonly illustrated abstractly on
a lattice with occupiable sites (see fig. ??). An occupied site of this lattice percolates
downwards in a directed fashion to another site with a percolation probability p. For a
given lattice dimension, the percolation either dies off or spreads to the lower bound of
the lattice. A critical probability seperates the two regimes, describing the setup where
the site just barely percolates to the lower bound. In this sense, directed percolation is a
continuous phase transition with an intrinsic notion of temporal evolution (as opposed to
static phase transitions, e.g. para-ferro). The evolution of puff behaviour of turbulence or
also of population dynamics in predator-prey systems can be represented in a lattice-like
way, which illustrates the connection between the three phenomena (see fig. 5).

The scaling behaviour of the occupation density of a lattice with respect to the percolation
probability, ρ ∼ (p− pc)

β, can be modeled to arrive at the universal exponent value of
β = 0.276. Looking at the pendant in the transition to turbulence, Hof et al. [13] conducted
a measurement of the density of turbulent regions (i.e. the turbulent fraction) for a range
of Reynolds numbers in Couette Flow (see fig. 6). They arrived at the best fitted value of
β = 0.29 ± 0.05 giving quantitative motivation for the placing of the laminar-turbulence
transition into the universality class of directed percolation. Further arguments for the
connection to directed percolation can be found in papers [13], [14].
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Figure 5: Graphic comparison between the evolution of directed percolation (left), puff
splitting (middle) and predator-prey dynamics (right). (Goldenfeld et al. 2015 [11])

Figure 6: Measurement of the turbulent fraction (i.e. density of turbulent regions among
laminar regions) for ca. 2 decades of Re in Couette flow. The resulting scaling exponent
was extracted to be β = 0.29± 0.05, which is close to the exponent β = 0.276 of directed

percolation. (Hof et al. 2015 [13])
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4 Conclusion

Turbulence is one of the few phenomena in the mascroscopic classical world observable by
eye that is still lacking a conclusive theory ab initio. The strongly interacting and chaotic
fluctuating nature of a turbulent flow practically forces us to approach the problem from
a statistical standpoint. Such approaches have led to important ideas for fully developed
turbulence, like the energy cascade and furthermore the Kolmogorov theory presented in
section 2. Kolmogorov theory predicts a scaling law for the energy spectrum of fluctua-
tions, E(k) ∼ ϵ2/3k−5/3, independent of the large scale geometry of the system at hand
hinting at universal structure in turbulence. It turned out, that Kolmogorov’s predictions
do not agree with experimental results, which is explained by incomplete similarity (scale
interference, anomalous scaling) due to intermittency. Hence, the small scale fluctuations
do in fact retain memory of the large system scale.
A connection is made to the field of critical phenomena in section 2.4, where the Ginzburg-
Landau theory made scaling predictions by coarse-graining over microscopic length scales.
Experimental results contradict these predictions, explained by a similar argument of scale
interference and a retaining memory of the system’s microscopic scale even in large scale
fluctuations. The salvation of universality in critical phenomena then came with the in-
troduction of the renormalization group approach by K. Wilson. Hence, there are efforts
to find equivalent RG-like approaches to tackle the scale interference in fully developed
turbulence.
In section 3, the transition to turbulence was discussed in the context of critical phenom-
ena. Based on experimental work by Hof et al. [9] and theoretical insights of Goldenfeld et
al [8], a notion of a critical Reynolds number was introduced. Furthermore, the interplay
between puff decay and puff splitting led to a connection to predator-prey dynamics and
finally to the universality class of directed percolation. Hence, it could be motivated that
even a chaotic, far from equilibrium phenomenon like the transition to turbulence shows
universality at onset and that collective dynamics obey simple scaling laws.
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