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The Harrow-Hassidim-Llyod algorithm is the first attempt to solve a linear system Ax = b on a
quantum computer. This method provides a exponential speed compared to its classical equivalent.
In this manuscript, this algorithm is reviewed, and its strengths and weaknesses are briefly discussed.
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INTRODUCTION

In the 21st century, the development of numerical
methods and the increasing computational power al-
lowed the computation of datasets of larger and larger
size. For example, the LHC experiment at CERN

∗ adrien.poncet@student.ethz.ch

produces annually 90 Pb [1]. All this data must be
filtered, analyzed and studied. Solving a linear system
is an essential building block in the solution of more
complex problems and a major breakthrough in these
kind of algorithms could have numerous consequences in
other problems.

Classically, the conjugate gradient (CG) is the standard
method for some classes of matrices [2]. Since 1981
and the Feynmann’s famous conference [3], quantum
computing gives a new perspective in order to have
exponentially faster algorithms than classical ones. In
2006, Harrow, Hassidim and Lloyd developed a quantum
algorithm to solve linear systems with an exponential
speedup compared to classical algorithm for some class
of matrices [4].

The report will present the Hassidom-Harrow-Lloyd
algorithm (HHL). The aim of this work is to explain this
algorithm. In section I, the mathematical and physical
background are presented. In section II, the subroutines
of the HHL algorithm are studied; they constitute the
building blocks of the method. In section III, the HHL
algorithm is presented and the different constrains and
caveats are analyzed.

I. THEORY AND BACKGROUND

In this section, the mathematical theory including lin-
ear algebra and physical formalism are briefly discussed.

A. Mathematical preliminaries

Let A ∈ RN×N be a matrix [5]. Moreover let b ∈
RN and x ∈ RN be vectors. Let us define the matrix
equation, called linear system or linear system problem
(LSP) as:

Ax = b. (1)

Given A and b, the goal is to find x. The solution can be
stated as x = A−1b. Numerically, the goal is to find an
approximation of the solution x, denoted by x̃, satisfying
∥x− x̃∥ < ε for a fixed ε. (In this report, any numerical
approximation of a quantity α will be denoted by a tilde
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α̃.) It is also possible to cast equation (1) into the form:

Cx̄ = b̄⇐⇒
(

0 A
A† 0

)(
0
x

)
=

(
b
0

)
. (2)

where C is a Hermitian matrix. Solving equations (1)
and (2) are mathematically equivalent.

The condition number κ of an invertible matrix A
is defined as:

κ =

∣∣∣∣
λmax

λmin

∣∣∣∣.

Let s be the maximal number of nonzero components
per line of the matrix A ∈ RN×N . Then A is called
s−sparse if s≪ N meaning that the nonzero entries are
negligible compared to the total number of elements of
the matrix.

B. Quantum formalism

In order to use quantum formalism, classical vectors
must be transformed in quantum states. In theory, quan-
tum states are expressed in term of the classical vectors
as:

|b⟩ = b

∥b∥ ,

|x⟩ = x

∥x∥ .

In practise, this task is non-trivial and will be discussed
later on section II B . Hence the classical system (1) is
transformed into its quantum equivalent called quantum
linear solver problem (QLSP):

A |x⟩ = |b⟩ . (3)

Now let us suppose that A is a Hermitian matrix. Let
{|u1⟩ , . . . , |uN ⟩} be the eigenbasis of A and {λ1, . . . , λN}
be the associated eigenvalues. By spectral theorem [6],
A can be expressed as:

A =

N−1∑

j=0

λj |uj⟩ ⟨uj | .

Moreover if A is invertible, then its inverse can be written
as:

A−1 =

N−1∑

j=0

1

λj
|uj⟩ ⟨uj | .

Any integer number x expanded on m bits is represented
by a binary expansion as:

x =

m−1∑

i=0

xi2
i + δ,

where xi ∈ {0, 1} for all i ∈ {1, . . . ,m − 1} and δ ≥ 0 is
an error term. In terms of quantum states, we use several
notations:

|x⟩ = |xm−1⟩ ⊗ · · · ⊗ |x0⟩ = |xm−1 . . . x0⟩ = |x⟩m , (4)

to express the binary expansion of x on the computa-
tional basis.

II. SUBROUTINES

In this section, the different subroutines needed for the
HHL algorithms are briefly discussed. First, the quan-
tum Fourier transform is reviewed. Second, the different
encoding methods used in HHL are presented. Finally,
the quantum phase estimation is described and used to
explain the Hamiltonian simulations in different cases.

A. Quantum Fourier transform

Let ωN = e
2π
N i be the primitive root of the unity. Let

g = (x0, . . . , xN−1) ∈ RN be a vector. The discrete
Fourier transform (DFT) maps the vector x into the vec-
tor ĝ whose components are:

ĝk =
1√
N

N−1∑

j=0

xjω
jk
N . (5)

The idea is to generalize the DFT for quantum states.
To define the Quantum Fourier transform (QFT), one
should apply the map in equation (5) to a quantum state
|x⟩. Let us suppose that the numerical result of the QFT
is stored on m-bits. As notation, |xm−1 . . . x0⟩ (resp.
|km−1 . . . k0⟩) stands for the binary expansion of x (resp.
k). Then, the number of states is N = 2m and it yields:

QFT |x⟩ = 1

2
m
2

N−1∑

k=0

ωxk
N |k⟩ = 1

2
m
2

N−1∑

k=0

e2πi
kx
2m |k⟩ ,

=
1

2
m
2

N−1∑

k=0

e2πix(
∑m−1

l=0 2l−mkl) |k⟩ ,

=
1

2
m
2

N−1∑

k=0

m−1∏

l=0

e2πixkl2
l−m |k⟩ ,

=
1

2
m
2

N−1∑

k=0

m−1⊗

l=0

e2πixkl2
l−m |k⟩ ,
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=
1

2
m
2

1∑

km−1=0

· · ·
1∑

k0=0

m−1∏

l=0

e2πixkl2
l−m |km−1 . . . k0⟩ ,

=
1

2
m
2

m−1⊗

l=0

1∑

kl=0

e2πixkl2
l−m |kl⟩ ,

=
1

2
m
2

m−1⊗

l=0

(
|0⟩+ e2πix2

l−m |1⟩
)
.

In terms of matrix, the QFT matrix is explicitly defined
as:

QFT =
1√
N

N−1∑

k=0

N−1∑

i=0

ωik
N |k⟩ ⟨i| .

B. Encoding

In this section, the preparation of states is discussed,
that is several manners on how classical information is
embedded into quantum states. Note that encoding is
an active field of research. For simplicity, it is assumed
that the classical data are already encoded in binary. In-
deed, there are three different common ways of encoding
classical information that will be used in the HHL algo-
rithm.

1. Basis encoding

The basis encoding consists of mapping a classical
binary string into the computational basis of qubits.
For example, consider x = 5 in its binary expansion:
x = 5 → 101. Then, the associated quantum state is
|101⟩. Moreover it is also possible to encode vectors. Let
y = (1, 2), then in binary it is: ybin = (01, 10). Then,
the vector ybin can be flattened and store into a single
state yfin = |0110⟩. The advantage of this method is that
it is straightforward to map classical to quantum. At
the beginning, all registers of a quantum computer are in
the zero state. Thus, in order to prepare a state to the
desired configuration, NOT gates (Pauli matrix σx) are
used. However, it is not efficient. As a “classical bit” is
represented by a quantum single qubit, however; it needs
a large number of qubits just to represent classical data
[7]. There exist more efficient methods as amplitude en-
coding Table I.

2. Amplitude encoding

The amplitude consists of encoding the information in
the amplitude of computational basis. For example a
2-dimensional array x = (x0, x1) is encoded as

|x⟩ = 1√
x20 + x21

(x0 |0⟩+ x1 |1⟩) . (6)

Note that the state is normalized and in theory the coef-
ficient x0 and x1 are of infinite precision. The main ad-
vantage is that it is possible to store data in ⌈log2 (NM)⌉
where N is the size of the array and M is the number of
arrays [8]. This applies also to any matrix A ∈ RN×N

which fulfills
∑N−1

i,j=0 |aij |2 = 1. That kind of matrix can

be stored in a state |ψA⟩ :

|ψA⟩ =
N−1∑

i=0

N−1∑

j=0

aij |i⟩ |j⟩ . (7)

In the QFT algorithm, the amplitude encoding allows us
to store any function f in the amplitude of a m-qubits
state |ψf ⟩ to compute its QFT:

|ψf ⟩ =
2m−1∑

x=0

f (x) |x⟩ ,

where x is encoded in binary on m-bits and |x⟩ is
expressed in the computational basis [9].

It is possible to store data in ⌈log2 (NM)⌉ [8], however,
in order to rebuild entirely the initial vector, one needs
to store one more bit of information which corresponds
to the value of the norm of the vector before the normal-
isation. Thus, one needs ⌈log2 (NM)⌉ + 1 (For a more
complete discussion see [10]). Finally, compared with
the basis encoding, it is an exponential improvement
in terms of space density Table I. In practice, it is
challenging to prepare such a state [11].

3. Hamiltonian encoding

The Hamiltonian encoding consists of encoding the
data in a ground state of a physical model. For example,
the Ising model [12] can be used and is given by:

H = −
∑

⟨ij⟩
Jijσiσj −

∑

j

hjσj . (8)

The information is stored in the coupling constant Jij
and in the field hj . Loading those classical data is equiv-
alent to solving the Hamiltonian H. However, the Ising
Hamiltonian (8) cannot be always used to store the clas-
sical information. Nevertheless, it remains useful in a
large number of problems [13].

C. Quantum random access memory

In the previous section, the representation of data was
discussed. In this section, the discussion is about how can
one access or load these data. In a classical computer,
the ability to access stored information is done through
the random access memory (RAM). For quantum com-
puters, one can use the same process but using qubits
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Encoding Number of qubits Runtime
Basis Nm O (Nm)
Amplitude log2 (N) O (log (N))
Hamiltonian log2 (N) O (log (NM))

Table I. Qubits and runtime complexity for basis, amplitude
and Hamiltonian encoding. N (resp. NM) denotes the size of
the vector (resp. matrix), m the number of bits of the approx-
imation. A single qubit should be added for every method to
store the normalization constant in order to obtain the initial
state [10].

instead of bits. Such a device is called quantum random
access memory (qRAM) . The aim of the qRAM is to
return quantum states in superposition of the classical
data stored in the memory to be run by a program or
for a certain tasks [11]. The number of memory calls for
qRAM is O (log (N)) where its classical equivalent needs
O (N) calls. One major restriction in the use of qRAM
is that in order to have a time complexity which is log-
arithmic, components of stored data must be relatively
uniform meaning without values which are much more
larger than the other. qRAM play an important role in
the exponential speed of the HHL.

D. Hamiltonian simulation

The Hamiltonian simulation consists to find a best ap-
proximation of a state |ψ (t)⟩ at a time t given a state with
initial value |ψ (t = 0)⟩. In theory, the time evolution op-
erator is given by:

U(t) = e−iHt. (9)

However, on a quantum computer, one needs to build an
approximation of (9). More formally, let ε > 0 be the
error at time t and H be a Hamiltonian. Then, the goal
is to find an approximation unitary operator Ũ such that:

∥Ũ − e−iHt∥ < ε. (10)

Such an operation on a classical computer has a com-
plexity of the order O

(
2N
)
where N is the number of

quantum variables. On the other hand, it has been
shown that a quantum computer needs O (N) steps to
achieve such a computation [14]. In particular, Hamilto-
nian simulation plays a central role in the exponential
speed up achieved by HHL algorithm.

A Hamiltonian H represented by a matrix of size
N is said to be k-local if it can be decomposed as:

H =

m∑

i=1

Hi, (11)

where every matrix Hi acts at most on k qubits. In par-
ticular, this implies that H is sparse, there is at least
O(mk) non zero entries. The idea is to break the Hamil-
tonian in some “easy” pieces to perform the simulation

efficiently. It has be shown that k-local Hamiltonians are
efficiently simulated by a quantum computer [15]. This
idea with the QPE is the key of the exponential speedup
of the HHL algorithm.

1. Trotter-Suzuki

Let us suppose, there are two k-local Hamiltonians
H1, H2. As the two Hamiltonians do not necessarily
commute (if the two Hamiltonians commute, then the
formula is exact by Baker-Campbell-Hausdorff formula),
one must use the Lie-Product formula [16]:

e−it(H1+H2) = lim
n→∞

(
e−it

H1
n e−it

H2
n

)n
.

and:

lim
n→∞

(
e−

iH1t
n e−

iH2t
n

)n
+O

(
t2

n

)
. (12)

In order to have a maximal error of ε, one can choose
n = O

(
max (∥H1∥, ∥H2∥) t2/ε

)
[17]. One can generalize

(12) to the sum (11), and obtain:

e−iHt = e−it
∑m

i=q Hi =
(
e−it

H1
n . . . e−itHm

n

)n
,

= e−iH1t . . . e−iHmt +O
(
t2

n

)
.

The Hamiltonian simulation is the heart of the expo-
nential speedup of the HHL algorithm. Today, there ex-
ists lots of algorithms such as quantum walk, product
formulas of different orders, and others Table III.

E. Quantum phase estimation

Let U be a unitary operator and let λ be an eigenvalue
associated to the eigenvector |u⟩. Since U is unitary,
λ is on the complex unit circle and can be written as
λ = e2πiθ for some θ ∈ [0, 1). The goal of the quantum
phase estimation (QPE) is to estimate the value of θ.
The principle is the following: the value of the phase
θ is stored in m qubits register called counting register.
On the other side, the eigenvector is stored in a s qubit
register. By applying control rotations, one can encode
the value of the phase on m qubits. By applying an
inverse QFT, one can extract the approximation of the
phase θ̃ and reading the result by measuring the states
Fig. 1.
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. . . . . . . . .

|u⟩ . . .s

|0⟩m

H

QFT−1
|2mθ⟩
=
∣∣∣θ̃
〉

H

H

U20 U21 U2m−1

|ψ1⟩ |ψ3⟩ |ψ4⟩|ψ2⟩

Fig. 1. Quantum phase estimation algorithm (QPE): Inspired
from a diagram of [18].

More formally, the state is initially |ψ0⟩ = |0⟩m |u⟩
(see Fig. 1). Hadamard gates are applied to |0⟩m.
Then, the state is placed on a superposition |ψ1⟩ =
1

2
m
2
(|0⟩+ |1⟩)⊗m |u⟩. Then powers of the control unitary

operator U are applied on the state |u⟩ and yield:

U2m |u⟩ = U2m−1

U |u⟩ ,
= U2m−1 (

e2πiθ |u⟩
)
,

= · · · = e2πi2
mθ |u⟩ .

Next, the control gate U2j applied on a state
1√
2
(|0⟩+ |1⟩) gives:

U2j 1√
2
(|0⟩+ |1⟩) = 1√

2

(
|0⟩+ e2πiθ2

j |1⟩
)
,

for all j ∈ {0, . . . ,m − 1}. Putting things together we
obtain

|ψ2⟩ =
1

2
m
2

m−1⊗

j=0

(
|0⟩+ e2πiθ2

j |1⟩
)
|u⟩ , (13)

=
1

2
m
2

2m−1∑

k=0

e2πiθk |k⟩ |u⟩ . (14)

where |k⟩ = |km . . . k0⟩. To manipulate the register, let
us apply an inverse QFT:

|ψ3⟩ = QFT−1 |ψ2⟩ ,

=
1

2n

2m−1∑

x=0

2m−1∑

k=0

e−
2πik
2m (x−2nθ) |x⟩ |u⟩ ,

which peak at x = 2mθ. It can be shown that x will
peaks with a probability of at least 4

π2 ≈ 0.4 [18]. Thus,
by measuring the first register of the state |ψ4⟩:

|ψ4⟩ = |2mθ⟩ |u⟩ ≈
∣∣∣θ̃
〉
|u⟩ .

One obtains the value of x (x is θ̃, which is the approx-

imation on m-bits of θ). If the θ̃ is an integer then the

result is exact. Otherwise, θ̃ is the best approximation
of 2nθ. (See section IVA2)

One remaining question is how it is possible to
have an eigenvector at the beginning of the process.
It turns out that it is not necessary to start with an
eigenstate. Let us suppose that |ψ⟩ is not an eigenstate.
But one can express any state in terms of an eigenbasis:

|ψ⟩ =
N−1∑

j=0

cj |uj⟩ .

And let θj be the phase of the eigenvalue associated to
|uj⟩. Doing the QPE as before, it yields:

|ψ4⟩ = |2mθ⟩
N−1∑

j=0

cj |uj⟩ ,

=

N−1∑

j=0

cj |2mθ⟩ |uj⟩ ,

=

N−1∑

j=0

cj

∣∣∣θ̃j
〉
|uj⟩ .

When the state is measured, the eigenvalue 2mλj is ob-
tained and associated with |uj⟩. The associated proba-
bility is |cj |2 ≥ 4

π2 . It is not possible to select a single
j-th eigenvalue during the measure. Hence, it is not nec-
essary to start the QPE with an eigenvector with a single
eigenvector.

1. Quantum phase estimation in Hamiltonian simulation

The Hamiltonian simulation allows us to approximate
any time evolution of an Hamiltonian by a unitary
matrix (9). But QPE allow us to find eigenvalues of any
unitary matrix. Hence, it is possible to find eigenvalues
of the Hamiltonian H. The QPE defined in the previous
section must be slightly modified in order to achieve the
goal.

In order to simplify computations, it is assumed
that N = 2m. Let U ∈ C2m×2m be a unitary matrix and
let |ψ⟩ be an eigenvector associated to the eigenvalue
e2πiθ. The goal is to estimate the eigenvalue λj of the

Hamiltonian H on m-qubits. Let U ∈ C2m×2m unitary
be defined by U = e−itH . Let |uj⟩ be an eigenstate of H
associated to the eigenvalue e2πiλj . Then:

e−iHt |uj⟩ = e−iλjt |uj⟩ . (15)

But, comparing with:

U |ψ⟩ = e2πiθ |ψ⟩ , (16)

after applying QPE, one obtains the following approxi-
mation:

θ̃ = 2mθ.
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At the end comparing (15) and (16) yields [19]:

2πiθ = iλjt⇐⇒ θ =
λjt

2π
.

Thus:

θ̃ =
λ̃jt

2π
2m. (17)

III. HHL ALGORITHM

The HHL algorithm allows us to solve in a quantum
manner the QLSP (3). In this section, the HHL will
be studied in details. First, the algorithm is reviewed.
Second, the complexity of the algorithm is studied and
finally the feasability is studied.

The idea is to extract the eigenvalue using QPE
and Hamiltonian simulation. In the eigenbasis, the
matrix is diagonal and its inverse in this basis is just the
inverse of each eigenvalue. The main difference with a
classical algorithm is that this task can be achieved in a
logarithmic number of operations.

The HHL requires some important hypothesis in
order to achieve the exponential speedup. First the
matrix A of the LSP (1) must be s-sparse. Without
loss of generality, one can assume that A is Hermitian
(otherwise the system is transformed into (2). In the
following sections, the matrix is supposed Hermitian and
sparse.

A. Algorithm overview

Three registers are needed to run the algorithm. One
ancilla register of 1 qubit, a second register of nl qubits
to store the value of the approximation of the eigenvalue
called clock register and a third register of nb = N qubits
called input register to store the solution of the linear
system. Initially, the system is prepared in the state
Fig. 2 :

|ψ0⟩ = |0⟩ |0⟩nl
|0⟩nb

.

Using amplitude encoding section II B 2, the vector b is
cast into |b⟩. The state |b⟩ is decomposed in terms of
{|uj⟩}Nj=0, the eigenvectors of A:

|b⟩ =
N−1∑

i=0

βj |uj⟩ ,

where βj = ⟨uj |b⟩ for all j ∈ {0, . . . , N−1}. After loading
the vector b, the state is:

|ψ1⟩ = |0⟩ |0⟩nl
|b⟩nb

=

N−1∑

j=0

|0⟩ |0⟩nl
βj |uj⟩nb

.

Then, using the method of QPE and Hamiltonian sim-
ulation section II E 1. More formally, applying QPE to
the matrix e−iAt yields:

|ψ2⟩ = |0⟩
∣∣∣λ̃j
〉
nl

|b⟩nb
=

N−1∑

j=0

βj |0⟩
∣∣∣λ̃j
〉
nl

|uj⟩nb
.

A controlled rotation is then applied on the ancilla of an

angle θ = 2 sin−1
(

C
λ̃j

)
. This transfers the information of

the eigenvalue in the ancilla. Depending on the method
to approximate θ, it is possible to choose C such that
C
λ̃j

∈ (−1, 1) see [20]. Then, the state |ψ2⟩ is transformed

to the state |ψ3⟩:

|ψ3⟩ =
N−1∑

j=0

βj

(√
1− C2

λ̃2j
|0⟩+ C

λ̃j
|1⟩
)∣∣∣λ̃j

〉
nl

|uj⟩nb
.

Repeat until a |1⟩ in the ancilla is measured

|0⟩ |1⟩

|0⟩ |0⟩

|0⟩ |x⟩

nl

nb

Ancilla
rotation

Hamiltonian
simulation
of eiAt

QPE−1

Load
|b⟩ F (x)

|ψ0⟩ |ψ3⟩|ψ1⟩ |ψ2⟩ |ψ4⟩ |ψ5⟩

Fig. 2. Schematic view of the main steps of the HHL algo-
rithm.

In order to avoid having a mixed state, the state |ψ3⟩
is uncomputed by applying an inverse QPE (This is also
known as uncompute trick, see [21]). It yields:

|ψ4⟩ =
N−1∑

j=0

(√
1− C2

λ̃2j
|0⟩+ C

λ̃j
|1⟩
)
|0⟩nl

βj |uj⟩nb
.

At this step, a measurement is performed. If a |0⟩ is
measured, the process is repeated until a |1⟩ is measured.
After the successful measurement, the state is:

|ψ5⟩ =
1

N
N−1∑

j=0

1

λ̃j
|1⟩ |0⟩nl

βj |uj⟩nb
,

=
1

N
N−1∑

j=0

|1⟩




1

λ̃j
|uj⟩ ⟨uj |

︸ ︷︷ ︸
≈A−1


 |b⟩nb

=
1

N
N−1∑

j=0

|1⟩ |0⟩nl
|x̃⟩nb

.

Where N =

√
∑N−1

j=0

|β2
j |

|λj |2 is the normalisation constant.

It possible to apply a function F in order to probe some
properties of the state |x̃⟩.
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B. Error bounds

In order to obtain a bound for the Hamiltonian simula-
tion it is possible to start with an different initial vector
|ψ0⟩. Instead of initializing the clock register to |0⟩ we
initialize it at:

|ψ0⟩ = |0⟩
√

2

T

T−1∑

τ=0

sin

(
π
(
τ + 1

2

)

T

)
|τ⟩nl

|0⟩nb
.

where T = O
(
log (N) s2t0

)
is the number of computa-

tional steps to perform Hamiltonian simulation for some
time 0 ≤ t ≤ t0 and t0 is a parameter chosen at the end
to minimize the error ε. The ratio t0

T is the step size of
the simulation.

Then, the conditional Hamiltonian simulation

1⊗∑T−1
τ=0 |τ⟩ ⟨τ | ⊗ eiAτt0/T is applied to the input

state |0⟩ ⊗ |ψ0⟩ ⊗ |b⟩ resulting:

|ψ2⟩ = |0⟩
(

T−1∑

τ=0

|τ⟩ ⟨τ |ψ0⟩ eiAt0τ/T |0⟩
)
.

But:

⟨τ |ψ0⟩ =
√

2

T

T−1∑

γ=0

sin

(
π
(
γ + 1

2

)

T

)
⟨γ|τ⟩︸ ︷︷ ︸
=δγτ

.

Hence, the previous simplify in:

|ψ2⟩ = |0⟩ ⊗
T−1∑

τ=0

√
2

T
sin

(
π
(
τ + 1

2

)

T

)
|τ⟩ ,

⊗
N−1∑

j=0

βje
−i

t0τ
T λj |uj⟩ .

By applying a change of basis into the Fourier basis |τ⟩ =∑N−1
k=0 ω

τk
N |k⟩, it yields :

|ψ2⟩ =
N∑

j=1

βj

T−1∑

k,τ=0

[√
2

T
sin

(
π
(
τ + 1

2

)

T

)
ei

τ
T (2πk−t0)

]

× |0⟩ |k⟩ |uj⟩

=

N∑

j=0

βj

T−1∑

k=0

αk|j |k⟩ |uj⟩ .

where:

ak|j =

√
2

T

T−1∑

τ=0

ei
τ
T (λjt0−2πk) sin

(
π
(
τ + 1

2

)

T

)
.

Let us define δ = |λjt0−2πk|. Then, it is possible to find
an upper bound for ak|j where:

|ak|j | ≤
8π

δ
.

if |k − λjt0
2π | ≥ 1 (Full proof can be found [4]).

Then, if |ak|j | ≫ 1 is large, then δ ≪ 1. Hence λ̃j ≈ 2πk
t0

:

|ψ2⟩ = |0⟩
N−1∑

j=0

βj

T−1∑

k=0

αk|j
∣∣∣λ̃j
〉
|uj⟩ .

Note that if the QPE will be exact, then |ak|j | = 1. This
result is coherent with (13).

C. Constrains, caveat and ameliorations

Let us compute the time complexity of the HHL al-
gorithm. The probability of success at each iteration is
p = O

(
1
κ2

)
. It can be shown that one needs to perform

the loop O (κ) times [21]. In order to load the vector b
one needs O (Tb). The time duration of the Hamiltonian
simulation is [22]:

T = Õ
(
t0s

2 log (N)
)
. (18)

Where Õ means that the slower growing terms
are neglected. Hence, the total runtime is
Õ
(
κ
(
Tb + t0s

2 log (N)
))

∼ Õ
(
κTb + κt0s

2 log (N)
)
.

As t0 = O
(
κ
ε

)
one can replace in (18). Which gives:

Õ
(
κTb +

κ2s2

ε
log (N)

)
.

One can see that the state preparation can be a impor-
tant bottleneck. But using, qRAM one can load data in
polynomial time. Thus, the total complexity is:

Õ
(
κ2s2

ε
log (N)

)
.

A classical computer cannot solve the problem in less
than O

(
N2
)
because just reading the coefficient of a ma-

trix A of size N ×N needs O
(
N2
)
operations. However,

to obtain a speedup, strict conditions should be fulfilled
[23]. Four main caveats are associated with the HHL
algorithm and are:

1. The condition number κ of A.

2. The preparation of the state |b⟩.

3. The Hamiltonian simulation eiAt.

4. The solution |x̃⟩ is a quantum state.

First, the matrix must be, as in any classical methods,
robustly invertible, meaning that the condition number κ
is not large. In other words that no eigenvalues are close
to zero. Let λ≪ 0 be an eigenvalue of A. By computing,
the inverse of the matrix, then diagonal elements of A−1

are 1/λ. Thus a small change in λ leads to a large change
in 1/λ. Suppose, there is an eigenvalue λ = κ

εk
such that
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0 < ε≪ 1. Then: 1
λ = κ

εk
≫ 1. Then, the inverse can be

separated in two parts :

A =

N∑

j=0

λj |uj⟩ ⟨uj | ,

=⇒ A−1 =

N∑

j=0
λ̸=λj

1

λj
|uj⟩ ⟨uj |+

1

λ
|uλ⟩ ⟨uλ| .

Thus, small variations such a truncation can lead to a
solution diverging from the “true” solution by several
orders of magnitude. A solution to this problem is
to use filter function to isolate the well-conditioned
and ill-conditioned part of the matrix A to avoid these
problems [4]. The complexity is linear in function of
the condition number : If the condition number grows
likeO

(
2N
)
then no exponential speedup can be achieved.

Second, the preparation of state |b⟩ is a non-trivial
step. It is possible to prepare the vector b in ⌈log2 (N)⌉
qubits using amplitude encoding. In theory, this can
be done using qRAM. However, the vector b must be
relatively uniform [24] On the other hand, if there
is an explicit formula which defines coefficients of b.
The vector b can be also loaded in logarithmic time
Table I . Moreover, qRAM loads data in logarithmic
time in theory. In practice, it is possible that the
time complexity is O (N c) for some c ∈ R+. Such a
behaviour can typically occur due to memory latencies
in the qRAM and should also be taken into account
[23]. Another problem of the qRAM is its robustness to
errors. Indeed, the need of error correction component
can lead to suppress any exponential speedup [25].

Thirdly, the Hamiltonian simulation must be done
with a logarithmic complexity. It is known that it
can be done for a sparse matrix A [15] and more
recently, it was showed that the method works
also if A is low-rank [26]. However it is neces-
sary that all its entries are efficiently available for
example using qRAM with all its consequences.

Fourth, even if the result state |x̃⟩ is stored on
log2 (N) qubits reading out the solution x̃ take order
O (N) which cancels out any previous speedup. Hence,
strictly speaking it is not possible to solve the QLSP
(ie: having the solution x̃) with an speedup compared to
the classical algorithm. However, it is possible to probe
the solution in order to extract information about the
solution such as value of inner products, means or the
location of large values in the sample [21]. Moreover, if
the error of the final state is ε, then : ∥ |x̃⟩ − |x⟩ ∥ < ε.
The error of the final classical solution is ε∥x∥. Hence,
the error on the state must be extremely small in order
for it to be acceptable. This increases the number of
qubits needed for the computation [27]

Problem Algorithm Runtime complexity Year
LSP CG a O (Nκs log (1/ε)) [2] -
QLSP HHL O

(
log(N)s2κ2/ε

)
[4] 2009

QLSP VTAA-HHL O
(
log(N)s2κ/ε

)
[28] 2010

QLSP
Childs
et. al.

O (sκ polylog(sκ/ε)) [29] 2017

QLSP QLSA O
(
κ2 polylog (N)∥A∥/ε

)
[21] 2018

a This method only works for positive definite matrix.

Table II. Different algorithms, their runtime complexities and
year of publication.

The HHL algorithm was the first algorithm to solve
the LSP in a quantum manner and open a new way of
approaching these problems. The recent papers made
improvements with the aim to reduce the sensitivity to
error and to condition number Table II.

IV. CONCLUSION

The aim of these report was to present in detail
the HHL algorithm. The different building blocks
were explained. The strengths and weaknesses of the
HHL were studied. In conclusion, the HHL does not
achieve a exponential speedup if the aim is to get the
entire solution of the linear system. However, if the
goal is to probe some properties of the solution, one
gets an exponential speedup. Moreover, the number
of hypothesis reduces the number of possibilities to
apply this algorithm. However, in many problems one
only wants some properties of the solution, in this case
HHL is a major improvement. Numerous possibilities of
applications are already under the scoop such as solving
the heat equation [30] or quantum machine learning
[31]. One should not forget that parallel computing
can also achieve major speedup compared to standard
classical algorithms. Indeed, solving a linear system with
parallel computation solves the LSP in O

(
log2 (N)

)
[23].

In terms of feasibility, on one side, qRAM has not
given (state of 2022) promising results and is still far
away from a mature device. Lots of difficulties arise such
as noise effects or error corrections and no satisfying
answers are already found. On the other hand, it is
possible to estimate the number of qubits needed to run
the HHL algorithm one a quantum computer.The HHL
has a similar structure as the Shor algorithm. One can
use it as a lower bound to compute the qubits needed to
run this algorithm on a quantum computer. To factor
a 2048 bit RSA one needs at least 4000 logical qubits
which is equivalent to millions of physical qubits [32].
Today one of the most advanced quantum computers
possesses 53 physical qubits [33].
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APPENDIX

A. Numerical application

In the following section, some simulations of QPE and
HHL algorithms have been done in order to illustrate
some of the aspects of each algorithm. The simulation
have been performed on the IBM Q device [34]. These
experiences are inspired from [35].

1. Quantum phase estimation simulation

To perform the QPE, m = 3 qubits are used to es-
timate the value of the phase and s = 3 qubits for the
eigenvector Fig. 1 . The goal is to estimate the eigenval-
ues of an unitary operator section II E. Let consider the
T -gate, which is explicitly given by:

T =

(
1 0
0 ei

π
4

)
.

Thus, the eigenvalues λ0 = 1 (resp. λ1 = ei
π
4 ) are asso-

ciated to eigenvectors |0⟩ (resp. |1⟩ ). Their associated
phases according to (16) are θ0 = 0 and θ1 = 1

8 . Hence

θ1 can be represented exactly in binary as 23θ, because
it is an integer.

First, we start the QPE with the initial state |ψ0⟩ = |0⟩.
Then, we obtained a probability distribution where the
peaks represents the final result. In binary, it gives:
001 → 1. Hence:

θ̃1 = 28θ1 = 1 =⇒ θ̃1 =
1

8
.

Then, using (17), we obtain the approximation λ̃1

λ̃1 = e2πθ̃ = e2πi
1
8 = ei

π
4 .

One can perform the same calculation with an initial
|ψ0⟩ = 1√

2
(|0⟩+ |1⟩). Then, the approximation of the

two phases of associated in eigenvalues are θ̃0 and θ̃1.
According to Fig. 4, one have in binary for θ0: 000 −→ 0
and for θ1 : 001 −→ 1. Then, one obtained:

θ0 = 23θ̃0 =⇒ θ̃0 = 0,

θ1 = 23θ̃1 =⇒ θ̃1 =
1

8
.

000 001 010 011 100 101 110 111
Binary expansion of θ0

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

ie
s

0.09

0.74

0.01 0.02 0.01
0.09

0.00 0.03

Fig. 3. Histogram of the QPE with initial state |ψ0⟩ = |0⟩.
The experiment was performed with 2048 shots. The distribu-
tion peaks at θ1 = 2m · θ̃1 = 1 then the eigenvalue is λ1 = ei

π
4 .

000 001 010 011 100 101 110 111
Binary expansion of phases

0.0

0.2

0.4

Pr
ob

ab
ilit

ie
s

0.45

0.39

0.03 0.03 0.03 0.02 0.03 0.03

Fig. 4. Histogram of the QPE with initial state |ψ0⟩ =
1√
2
(|0⟩+ |1⟩). The experiment was performed with 2048

shots. The distribution peaks at θ0 and θ1. Then, the eigen-

values are {1, e2πi 1
8 = ei

π
4 }

Then, eigenvalues are:

λ̃0 = e2πi·0 = 1,

and

λ̃1 = e2πi
1
8 = ei

π
4 ,

2. Non-exact quantum phase estimation

Let’s study control rotations are studied CR 2π
3
of angle

2π
3 . This gate is explicitly given by:

CR 2π
3

=

(
1 0

0 ei2π
1
3

)
.

Note that the eigenvalue associated to the eigenvector
|1⟩ is 1

3 but on 3 qubits, it is not possible to obtain the

exact value of the phase : 23

3 = 8
3 ≈ 2.6666. This num-

ber is between 2 → 010 and is 3 → 011 but 011 is the
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nearest integer. It is expected that the most probable
outcome of the computation is 011. By performing, the

000 001 010 011 100 101 110 111
Binary expansion of the phase θ

0.0

0.2

0.4

Pr
ob

ab
ilit

ie
s

0.06 0.06

0.22

0.48

0.06
0.04 0.03

0.05

Fig. 5. Probability distribution of the quantum phase estima-
tion of a control rotation CR 2π

3
on 3-qubits.

QPE estimation on a quantum computer, the most prob-
able outcome is 011 as expected Fig. 5 and is bigger than
4
π2 as expected from section II E. Note also that the sec-
ond most probable outcome is 010.
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Algorithm
Query

complexity
Time

complexity
Gate

complexity
Product
formula

O
(
s4t2/ε

)
O

(
s4t2/ε

)
O

(
N5

)
Product
formula

O
(
52ks3t(st/ε)1/2k

)
O

(
52ks3t(st/ε)1/2k

)
O

(
52kn3+1/k

)
Quantum walk O (st/

√
ε) O (st/

√
ε) O

(
n4 logn

)
Fractional-query

simulation
O

(
s2t log(st/ε)

log log(st/ε)

)
O

(
s2t log2(st/ε)

log log(st/ε)

)
O

(
n4 log2 n

loglog n

)
Taylor series O

(
s2t log(st/ε)

log log(st/ε)

)
O

(
s2t log2(st/ε)

log log(st/ε)

)
O

(
n3 log2 n

loglog n

)
Lin. combinaison

of quantum
walk steps

O
(
st log(st/ε)

log log(st/ε)

)
O

(
st log

3.5(st/ε)
log log(st/ε)

)
O

(
n4 log2 n

log logn

)
Quantum signal

processing
O

(
st+ log(1/ε)

log log(1/ε)

)
O

(
st+ log(1/ε)

log log(1/ε)

)
O

(
N3

)
Table III. List of different Hamiltonian simulation algorithms and their different complexities. Let t be the time of the simulation,
ε the error on the solution, N denotes the size of the matrix and s is the sparsity of the matrix [36].
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