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1 Introduction

Quantum computing is a field at the junction of theoretical physics and theoretical computer

science. Quantum computers containing tens of qubits, the largest being the 127-qubit sys-

tem by IBM [1], have been demonstrated experimentally. Yet, the field is far from developed

and desktop quantum computers remain a distant dream. On the one hand, we need viable

realisations of qubits which can be used to build large-scale quantum computers. On the

other hand, we also need to develop quantum algorithms which can exploit the quantum

advantage such systems offer over classical computers. The biggest leaps in this area came

in the 90s, with the development of Shor’s algorithm [2] and Grover’s algorithm [3].

Grover’s algorithm is a quantum algorithm used to solve the unstructured search problem.

Consider a Boolean function f : {0, 1, ..., N − 1} → {0, 1}. The goal is to find any x0 ∈
{0, 1, ..., N − 1} such that f(x0) = 1. The most efficient classical algorithm to solve this

problem is linear searching, which will find such an x0 in O(N) queries to the f . Grover’s

algorithm on the other hand takes just O(
√
N) to find an x0, albeit with an associated error

probability [4].

This report discusses the quantum amplitude amplification algorithm [5], which is a generali-

sation of Grover’s quantum search algorithm for unstructured data. Amplitude amplification

works using any quantum algorithm A that uses no measurement, in place of the Walsh-

Hadamard operator H⊗n used in Grover’s algorithm. We can thus choose an algorithm which

produce a non-uniform superposition biased towards the target object instead of producing

a uniform superposition.

The report begins with a description of Grover’s search algorithm in section 2. I present an

induction based proof of the effect of multiple iterations of the Grover subroutine on the initial

state. In section 3, the more general amplitude amplification algorithm is presented and an

algebraic proof is given for the effect of multiple iterations of the amplitude amplification

subroutine. It is shown that the probability of measuring the target state after j iterations of

the algorithm subroutine is sin2 [(2j + 1)θ], where sin2 θ = a is the initial success probability

of algorithm A. A query complexity analysis of amplitude amplification is presented in

section 4. I discuss the query complexity of the algorithm in two cases – when a is known

prior to the experiment and when it is unknown. It is shown that the algorithm takes

O(
√
N) queries to the function f in both cases, demonstrating a clear quantum advantage

over classical algorithms.
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2 Grover’s Quantum Search Algorithm

2.1 Problem statement

Consider a Boolean function f : {0, 1}n → {0, 1}. The goal is to find any ”good solution”

to the function f , i.e., any xi ∈ {0, 1}n such that f(xi) = 1.

2.2 Solution setting

Let H denote the Hilbert space of a 2-dimensional quantum system and let {|z⟩}z∈{0,1} be

the computational basis of this system. We also assume that we have n copies of this system.

We can represent the computational basis of the composite system, H⊗n as {|x⟩}x∈{0,1}n . We

note that the set {0, 1}n can be invertibly mapped to the set {0, 1, .., N − 1}, where N = 2n,

such that binary number x ∈ {0, 1}n is mapped to its decimal equivalent y ∈ {0, 1, .., N−1}.

The Boolean function f partitions H⊗n into two orthogonally complementary subspaces:

Hgood is the subspace spanned by the states {|x⟩ : f(x) = 1, x ∈ {0, 1}n} and Hbad is the

subspace spanned by the remaining basis kets. It is easy to see that Hgood and Hbad are

orthogonal complements. Any state |ϕ⟩ ∈ H may be decomposed into its components on

Hgood and Hbad as |ϕ⟩ = |ϕgood⟩+ |ϕbad⟩ .

We define quantum phase oracles Uf and U|0⟩ whose action on the basis vectors is given as

Uf |x⟩ =

− |x⟩ , if f(x) = 1

|x⟩ , if f(x) = 0,

U|0⟩ |x⟩ =

− |x⟩ , if x = 0

|x⟩ , otherwise.

Additional qubits may be required for the internal workings of the phase oracles that we use

to solve this problem, for instance to convert the bit oracles O|0⟩ and Of to phase oracles

U|0⟩ and Uf respectively. Throughout this derivation we will assume access to these oracles

as black boxes and not concern ourselves with their internal working.
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We note that the oracles U|0⟩ and Uf are equivalent to reflection operators which reflect the

input state along |0⟩ and along Hgood respectively. They can be represented in functional

form as
U|0⟩ = 1 − 2 |0⟩ ⟨0|

Uf = 1 − 2
∑

x∈Hgood

|x⟩ ⟨x| . (1)

2.3 Algorithm outline and proof

We start with the |0⟩⊗n state, and apply a Walsh-Hadamard transformation to achieve an

equal superposition state

|ψ⟩ = H⊗n |0⟩⊗n =

(
|0⟩+ |1⟩√

2

)⊗n

=
1√
N

N−1∑
x=0

|x⟩ . (2)

We now define a subroutine known as the Grover iteration, which we denote by G. The

iteration has the following steps:

1. Apply the oracle Uf

2. Apply the Walsh-Hadamard transformation H⊗n

3. Apply the oracle −U|0⟩

4. Apply the Walsh-Hadamard transformation H⊗n.

The circuit for the above iteration is given in figure 1. The combined effect of steps 2, 3 and

4 is H⊗n(2 |0⟩ ⟨0| − 1)H⊗n = 2 |ψ⟩ ⟨ψ| − 1. Thus, the combined iteration may be written as

G = (2 |ψ⟩ ⟨ψ| − 1)Uf .

Figure 1: Schematic circuit for the Grover iteration G. The oracles Uf and U0 may use

additional workspace qubits for their internal functioning which are not depicted here. We

consider the oracles to be black box operators and assume that we have access to such oper-

ators for the system of interest.
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Theorem 1 Let f : {0, 1}n → {0, 1} be a Boolean function and let xi ∈ {0, 1}n such that

f(xi) = 1 be the good solutions of f . Let there be t good solutions out of N = 2n possible

inputs. The probability of measuring a good solution, i.e, |xi⟩ such that f(xi) = 1, after j

iterations of the Grover iteration G starting from the initial state |ψ⟩ = H⊗n |0⟩⊗n is given

by sin2 [(2j + 1)θ], where θ is defined so that sin2 θ = t/N and 0 < θ ≤ π/2.

Proof. We decompose |ψ⟩ its components on Hgood and Hbad,

|ψ⟩ = |ψgood⟩+ |ψbad⟩ .

We rewrite the above decomposition in terms of normalised components |ψ1⟩ =
|ψgood⟩√

⟨ψgood|ψgood⟩
and |ψ0⟩ = |ψbad⟩√

⟨ψbad|ψbad⟩
as

|ψ⟩ = sin θ |ψ1⟩+ cos θ |ψ0⟩ , (3)

and define parameter θ as sin2 θ = a = ⟨ψgood|ψgood⟩, where a is the success probability of the

algorithm H⊗n. If we have t good solutions to the Boolean function, the success probability

a = t/N . Applying the Grover iteration G to |ψ⟩ we get

G |ψ⟩ = (2 |ψ⟩ ⟨ψ| − 1)Uf (sin θ |ψ1⟩+ cos θ |ψ0⟩)

= (2 |ψ⟩ ⟨ψ| − 1)(− sin θ |ψ1⟩+ cos θ |ψ0⟩)

= −2 sin θ ⟨ψ|ψ1⟩ |ψ⟩+ 2 cos θ ⟨ψ|ψ0⟩ |ψ⟩+ sin θ |ψ1⟩ − cos θ |ψ0⟩

= {sin θ(1− 2 sin2 θ) + cos θ(2 sin θ cos θ)} |ψ1⟩+ {cos θ(1− 2 sin2 θ) + sin θ(2 sin θ cos θ)} |ψ0⟩

= sin 3θ |ψ1⟩+ cos 3θ |ψ0⟩ .

Similarly, it can be shown through induction that applyingG a total of j times yields the state

Gj |ψ⟩ = sin [(2j + 1)θ] |ψ1⟩ + cos [(2j + 1)θ] |ψ0⟩. To complete the process, we measure the

final state Gj |ψ⟩ in the computational basis, which yields a state in Hgood with probability

sin2 [(2j + 1)θ]. We can find the optimal j ∈ N to maximise the probability of measuring a

state in Hgood. A circuit diagram for the algorithm is provided in figure 2.

Figure 2: Schematic circuit for Grover’s algorithm.
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Geometrically, the action of a single Grover iteration can be represented as a reflection along

the state |ψbad⟩ followed by a reflection along the original state |ψ⟩. The process is depicted
in figure 3. As we apply further Grover iterations, the state vector aligns more closely to

|ψgood⟩. Upon applying further iterations, the vector once again begins to move away from

|ψgood⟩ and the success probability upon measurement of the final state decreases.

Figure 3: Geometric visualisation of the effect of applying a single iteration of G to |ψ⟩. Here,
A ≡ H⊗n and Q ≡ G. Initially, the angle between |ψ⟩ and |ψbad⟩ is θ, which changes to −θ
on applying Uf . The angle between Uf |ψ⟩ and |ψ⟩ is 2θ. Upon applying −H⊗nU|0⟩H

⊗n to

this state, we get the final state G |ψ⟩ which is a reflection about |ψ⟩. Since the angle between
G |ψ⟩ and |ψ⟩ is 2θ and the angle between |ψ⟩ and |ψbad⟩ is θ, the total angle between G |ψ⟩
and |ψbad⟩ is 3θ.
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3 Amplitude Amplification

3.1 Problem statement

Consider a Boolean function f : {0, 1, ..., N − 1} → {0, 1}. The goal is to find any ”good

solution” to the function f , i.e., any x ∈ {0, 1, ..., N − 1} such that f(x) = 1.

3.2 Solution setting

LetH denote the Hilbert space of an n-dimensional quantum system and let {|x⟩}x∈{0,1,...,N−1}

be the computational basis of this system. The Boolean function f partitions H into

two orthogonally complementary subspaces: Hgood is the subspace spanned by the states

{|x⟩ : f(x) = 1, x ∈ {0, 1, ..., N − 1} and Hbad is the subspace spanned by the remaining

computational basis vectors.

We again define quantum phase oracles Uf and U|0⟩ as we did in section 2, whose action on

the basis vectors is given as

Uf |x⟩ =

− |x⟩ , if f(x) = 1

|x⟩ , if f(x) = 0,

U|0⟩ |x⟩ =

− |x⟩ , if x = 0

|x⟩ , otherwise.

We note that the oracles U|0⟩ and Uf are equivalent to reflection operators which reflect the

input state along |0⟩ and Hgood respectively. They can be represented in functional form as

shown in equation 1

U|0⟩ = 1 − 2 |0⟩ ⟨0|

Uf = 1 − 2
∑

x∈Hgood

|x⟩ ⟨x| .

Let A be any quantum algorithm that acts on H and uses no measurements. By virtue of

being an algorithm, A is unitary and thus invertible. We start with the |0⟩ state, and apply

A to achieve a state |ψ⟩,

|ψ⟩ = A |0⟩ =
N−1∑
x=0

αx |x⟩ . (4)
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We now define a subroutine which we denote by Q. The subroutine has the following steps:

1. Apply the oracle Uf

2. Apply the quantum algorithm A−1

3. Apply the oracle −U|0⟩

4. Apply the quantum algorithm A.

The combined effect of steps 2, 3 and 4 is A(2 |0⟩ ⟨0| − 1)A = 2 |ψ⟩ ⟨ψ| − 1. Thus, the

combined subroutine may be written as Q = (2 |ψ⟩ ⟨ψ| − 1)Uf .

3.3 Algorithm outline and proof

Theorem 2 Suppose f : {0, 1, ..., N − 1} → {0, 1} is a Boolean function and let

xi ∈ {0, 1, ..., N − 1} such that f(xi) = 1 be the good solutions of f . Let A be a quantum

algorithm that uses no measurements and let a be the initial success probability of A. The

probability of measuring a good solution, i.e, |xi⟩ such that f(xi) = 1, after j iterations of

the subroutine Q starting from the initial state |ψ⟩ = A |0⟩ is given by sin2 [(2j + 1)θ], where

θ is defined so that sin2 θ = a and 0 < θ ≤ π/2.

Proof. We now rewrite |ψ⟩ as a superposition of its components in Hgood and Hbad,

|ψ⟩ = |ψgood⟩+ |ψbad⟩

and define parameter θ as sin2 θ = a = ⟨ψgood|ψgood⟩, where a is called the success probability

of the algorithm A. We define Hψ as the subspace spanned by |ψgood⟩ and |ψbad⟩. The

subspace is 2-dimensional if a is neither 0 nor 1, and 1-dimensional otherwise. We denote

by H⊥
ψ the orthogonally complementary subspace of Hψ in H.

Since (2 |ψ⟩ ⟨ψ| − 1) acts as the identity operator in H⊥
ψ , Q can be written as −Uf in

H⊥
ψ . Thus, Q2 acts as the identity operator in H⊥

ψ , and so every eigenvector of Q in H⊥
ψ

has eigenvalue +1 or −1. On the other hand, the action of Q on Hψ can be given as

(2 |ψ⟩ ⟨ψ| − 1)(1 − 2
a
|ψgood⟩ ⟨ψgood|).

Q |ψgood⟩ = (1− 2a) |ψgood⟩ − 2a |ψbad⟩

Q |ψbad⟩ = 2(1− a) |ψgood⟩+ (1− 2a) |ψbad⟩ ,
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which shows that the subspace spanned by |ψgood⟩ and |ψgood⟩, Hψ is stable under the

application of subroutine Q.

Since Q is a unitary operator, its eigenvectors form an orthogonal basis. Since Hψ is sta-

ble under the action of Q and 2-dimensional, the orthogonal basis of Hψ consists of two

eigenvectors of Q,

|ψ±⟩ =
1√
2

(
1√
a
|ψgood⟩ ±

ι√
1− a

|ψbad⟩
)
, (5)

provided 0 < a < 1. The corresponding eigenvalues are λ± = e±ι2θ.

In the eigenvector basis, |ψ⟩ can be decomposed as

A |0⟩ = |ψ⟩ = −ι√
2

(
eιθ |ψ+⟩ − e−ιθ |ψ−⟩

)
. (6)

After j iterations of the subroutine Q, we arrive at the state

Qj |ψ⟩ = −ι√
2

(
e(2j+1)ιθ |ψ+⟩ − e−(2j+1)ιθ |ψ−⟩

)
=

1√
a
sin ((2j + 1)θ) |ψgood⟩+

1√
1− a

cos ((2j + 1)θ) |ψbad⟩ .
(7)

It follows that if 0 < a < 1 and if we compute Qj |ψ⟩ for some integer j > 0, then a final

measurement will produce a good state with the probability sin2 [(2j + 1)θ].

If the initial success probability a is either 0 or 1, then the subspace Hψ spanned by |ψgood⟩
and |ψbad⟩ has dimension 1 only, but the conclusion remains the same: If we measure the

system after j rounds of amplitude amplification, then the outcome is good with probability

sin2 [(2j + 1)θ].

4 Query Complexity Analysis of Quantum Amplitude

Amplification Algorithm

Having laid down the algorithm, we would like to know the query complexity of this al-

gorithm so that it can be compared to classical algorithms which solve the same problem.

Query complexity is defined as the number of times the function f has to be queried in the

implementation of this algorithm.

We want the value of sin2 [(2m+ 1)θ] to be as close to 1 as possible in order to maximise

the probability of collapsing to a good solution upon measuring the final state. There is an
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optimal number of iterations m to maximise the success probability of the algorithm. The

query complexity of the algorithm critically depends on this number of iterations m.

Unfortunately, our ability to choose m wisely depends on our knowledge of θ, and as a

consequence on a. Depending on the amount of prior knowledge we have about a, we can

come up with different approaches to maximise the success probability. The two extreme

case are when we know the value exactly and when we have no prior knowledge about a.

In the following sections, it is shown that regardless of whether the value of a is known exactly

or completely unknown, the quantum amplitude amplification algorithm finds a solution to

the problem in the O( 1√
a
) queries to the function f .

4.1 Query complexity with known a

Solving the equation sin2 ((2m+ 1)θ) = 1, we have m = π/4θ − 1/2. Since the number of

iterations has to be an integer, we define m̃ = ⌊π/4θ⌋. We note that |m̃−m| ≤ 1/2 so m̃ is

the closest we can get to m iterations. We also note that m̃ ≤ π/4θ = π
4

√
1/a, which means

that the search algorithm will terminate in O(
√

1/a) iterations of the subroutine Q.

It also follows from |m̃−m| ≤ 1/2 that |(2m+ 1)θ − (2m̃+ 1)θ| ≤ θ. But (2m̃+ 1)θ = π/2

by definition of m̃. Therefore |cos((2m+ 1)θ)| ≤ |sin θ|. This means that the probability of

failure after exactly m̃ iterations of Q is given by cos2 ((2m+ 1)θ) ≤ sin2 θ = a, and hence

the probability of success is at least 1− a.

If a is very large, then we have a big chance of failure even after optimal number of iterations.

In that case, we could simply measure the original state ψ = A |0⟩ which would collapse to

a state in the good subspace with probability a.

Theorem 3 (Quadratic speedup) Let A be any quantum algorithm that uses no mea-

surements, and let f : {0, 1, ..., N − 1} → {0, 1} be any Boolean function. Let a be the initial

success probability of algorithm A. Suppose a > 0, and set m = ⌊π/4θ⌋, where θ is defined

so that sin2 θ = a and 0 < θ ≤ π/2. Then, if we compute QmA |0⟩ and measure the system,

the outcome is good with probability at least max(1− a, a).



10

4.2 Query complexity with unknown a

Lemma 4 For any real numbers α and β, and any positive integer m,

m−1∑
j=0

cos(α + 2βj) =
sin(mβ) cos(α + (m− 1)β)

sin β
.

In particular, when α = β,

m−1∑
j=0

cos((2j + 1)α) =
sin(2mα)

2 sinα
.

Lemma 5 Let a be the (unknown) initial success probability of algorithm A and let θ be such

that sin2 θ = a. Let m be an arbitrary positive integer. Let j be an integer chosen at random

according to the uniform distribution between 0 and m− 1. If we measure the final state

after applying j iterations of the subroutine Q starting from the initial state |ψ⟩ = A |0⟩, the
probability of obtaining a solution is exactly

Pm =
1

2
− sin(4mθ)

4m sin(2θ)
.

In particular Pm ≥ 1/4 when m ≥ 1/ sin(2θ).

Proof. The probability of success if we perform j iterations of subroutine Q is sin2((2j + 1)θ).

It follows that the average success probability when 0 ≤ j < m is chosen randomly is

Pm =
m−1∑
j=0

1

m
sin2((2j + 1)θ)

=
1

2m

m−1∑
j=0

1− cos((2j + 1)2θ)

=
1

2
− sin(4mθ)

4m sin(2θ)
.

If m ≥ 1/ sin(2θ) then
sin(4mθ)

4m sin(2θ)
≤ 1

4m sin(2θ)
≤ 1

4
.

The conclusion follows.

We are now ready to describe the algorithm for finding a solution when the initial success

probability a is unknown. For simplicity we assume at first that 0 ≤ a ≤ 3/4.
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1. Initialize m = 1 and set λ = 6/5.

(Any value of λ strictly between 1 and 4/3 would do.)

2. choose j uniformly at random among the nonnegative integers smaller than m.

3. Apply j iterations of Q starting from initial state |ψ⟩ = A |0⟩.

4. Observe the register: let |xi⟩ be the outcome.

5. If f(xi) = 1, the problem is solved: exit.

6. Otherwise, set m to min(λm,
√
N ) and go back to step 2.

Theorem 6 This algorithm finds a solution in expected time in O(
√
1/a ).

Proof. Let θ be the angle so that sin2 θ = a. Let

m0 = 1/ sin(2θ) =
1

2
√

(1− a)a
<

√
1

a

(recall that we assumed a ≤ 3/4).

We shall estimate the expected number of times that the subroutine Q is performed: the

total time needed is clearly in the order of that number. On the sth time round the main

loop, the value of m is λs−1 and the expected number of subroutines Q is less than half that

value since j is chosen randomly so that 0 ≤ j < m. We say that the algorithm reaches the

critical stage if it goes through the main loop more than ⌈ logλm0⌉ times. The value of m

will exceed m0 if and when the algorithm reaches that stage.

The expected total number of subroutines needed to reach the critical stage, if it is reached,

is at most

1

2

⌈ logλm0⌉∑
s=1

λs−1 <
1

2

λ

λ− 1
m0 = 3m0 .

Thus, if the algorithm succeeds before reaching the critical stage, it does so in a time in

O(m0), which is in O(
√

1/a ) as required.

If the critical stage is reached then every time round the main loop from this point on will

succeed with probability at least 1/4 by virtue of Lemma 5 since m ≥ 1/ sin(2θ). It follows
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that the expected number of subroutines Q needed to succeed once the critical stage has

been reached is upper-bounded by

1

2

∞∑
u=0

3u

4u+1
λu+⌈ logλm0⌉ <

λ

8− 6λ
m0 =

3

2
m0 .

The total expected number of subroutines, in case the critical stage is reached, is therefore

upper-bounded by 9
2
m0 and thus the total expected time is in O(

√
1/a ) provided 0 ≤

a ≤ 3/4. Note that 9
2
m0 ≈ 9

4

√
1/a when a≪ 1, which is less than four times the expected

number of iterations that we would have needed had we known the value of a ahead of time.

The case a > 3/4 can be disposed of in constant expected time by classical sampling.

Theorem 7 (Quadratic speedup without knowing a) Let A be any quantum algorithm

that uses no measurements, and let f : {0, 1, ..., N − 1} → {0, 1} be any Boolean function.

Let a be the initial success probability of algorithm A and suppose a > 0. Then, there exists

an algorithm that finds a good solution using queries to f which are in the O(
√

1/a).

5 Conclusion

In this report I presented the quantum amplitude amplification algorithm to solve the un-

structured search problem. Given a Boolean function f : {0, 1, ..., N − 1} → {0, 1}, the
goal is to find a good solutions, i.e, any x0 such that f(x0) = 1. The following points were

presented in this report:

• Amplitude amplification algorithm finds a good solution to the Boolean function with

query complexity in O(
√

1/a), where a is the initial success probability of quantum

algorithm A.

• The query complexity remains the same even if the initial success probability a is

unknown ahead of time. The algorithm thus achieves a quadratic speedup even in the

worst case over the expected complexity of classical algorithms.

• The probability of measuring a good solution after j iterations of the algorithm sub-

routine Q, starting from the initial state |ψ⟩ = A |0⟩, is given by sin2 [(2j + 1)θ] where

θ is defined so that sin2 θ = a. We can choose an optimal number of iterations

m ∈ O(
√

1/a) so that sin2 [(2m+ 1)θ] ≈ 1.
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