
Adiabatic Quantum Computation

Alice Balest1

1Physics Department, ETH Zurich∗

(Dated: 30 May 2022)

Adiabatic Quantum Computation (AQC) is a computer architecture based on the results of the
adiabatic theorem. The theorem states quantitative conditions to apply AQC. These conditions
further influence the costs of AQC. Analyzing the costs one can find that in some cases AQC leads
to a quantum speedup over classical calculations. AQC can simulate algorithms implemented in the
circuit model up to a polynomial overhead. Universality of AQC follows from the equivalence of
a unitary operation (implemented using a set of gates in the circuit model) and the Hamiltonian
involved in the adiabatic calculation. Although AQC is universal, its application is limited by
the size of the energy gap of the Hamiltonian involved in the computation and by the lack of
information on the ground state for certain models. An alternative model to AQC, which combines
adiabatic evolution with the circuit model, can be realized with adiabatic gate teleportation. In this
manuscript we discuss the adiabatic theorem and the equivalence of AQC and circuit model. We
then review examples of adiabatic algorithm such as the adiabatic Grover, adiabatic Deutsch-Jozsa,
adiabatic Bernstein-Vazirani and the glued trees problem algorithm. Finally, we discuss adiabatic
gate teleportation.

Contents

I. Introduction 2

II. Conditions and costs of AQC 3
A. The adiabatic theorem 3
B. Costs of AQC 4

III. “Universality” of AQC and Hamiltonian complexity theory 4
A. Equivalence to circuit model 4

1. From CM to AQC 4
2. From AQC to CM 4

B. Universality limits 5
C. Hamiltonian complexity theory 6

1. Decision problems classes 6

IV. Theory of AQC applyed to algorithms 7
A. Grover algorithm 7
B. Deutsch-Josza algorithm 7
C. Bernstein-Vazirani algorithm 8
D. Glued trees problem 9
E. Adiabatic PageRank algorithm 9

V. Stoquastic AQC 10
A. Simulation of stoquastic Hamiltonians 10

VI. Adiabatic Gate Teleportation 11

VII. Summery and concluding remarks 13

References 13

∗Electronic address: balesta@student.ethz.ch

mailto:balesta@student.ethz.ch

2

I. INTRODUCTION

The rough idea of adiabatic quantum computation is to solve a computational problem by incorporating
its solution to an eigenstate of a Hamiltonian, which is in general hard to solve, and use adiabatic evolution
to find the solution. To this end, one introduces a time-dependent Hamiltonian, with an initial form that
is easy to solve and a final form that is identical to the Hamiltonian of interest. The crucial point is to
slowly change the time-dependent Hamiltonian such that its eigenstate evolves towards the instantaneous
state of the Hamiltonian describing the problem, where the solution to the computational problem is
incorporated.
Why does the evolution of the time-dependent Hamiltonian need to be slow? How slow is the time-

dependent Hamiltonian evolution for certain adiabatic algorithms? How is this Hamiltonian defined?
Where is the final solution to the computational problem? These are some of the key points of theoretical
understanding of AQC (applied to closed systems) discussed in this document.
An intuitive experiment to observe adiabatic evolution would be changing the length of an harmonic

oscillating pendulum’s string at different speed. Adjusting the length of the string almost instantaneously
would change the frequency of the pendulum to the point of losing the oscillatory motion of the pendulum.
Adjusting the length of the string gradually, would allow the pendulum to keep oscillating with a new
frequency; the pendulum gets enough time to adapt while oscillating.
What allows to solve a computational problem through evolution method is the choice to evolve the

time-dependent Hamiltonian in an adiabatic way. According to the adiabatic theorem, it is possible
to evolve a system in a certain eigenstate of a time-dependent Hamiltonian H(t) (solution to the time
dependent Schrödinger equation) keeping the system in the same eigenstate as prior to the evolution.
Intuitively, it means that it is possible to find an unknown instantaneous state (which is the solution
of a certain computational problem), identifying this “solution” state thanks to the fact that we know
where the solution is incorporated. It is enough to know in which energy level of the final Hamiltonian
is incorporated.
In quantum physics, the instantaneous state |ψ0

f ⟩ containing the solution is defined to be the solution

to the Hamiltonian problem at time T (Hf = H(t = T)):

Hf |ψ0
f ⟩ = E0

f |ψ0
f ⟩ (1.1)

in the same energy level (for example the ground state) where the initial Hamiltonian (Hi = H(t = 0))
is initialized:

Hi|ψ0
i ⟩ = E0

i |ψ0
i ⟩. (1.2)

The initial Hamiltonian is an arbitrary Hamiltonian, which is easier to prepare and to solve compared to
the final Hamiltonian.
The initial and final Hamiltonian are different interpolated time solution of the time-dependent Hamil-

tonian H(s):

H(s) = A(s)Hi +B(s)Hf (1.3)

where A(s) and B(s) are time schedule. For example, linear interpolation would require A(s) = s,B(s) =
1−s. An alternative is unitary interpolation, see Section 4.2 for an example of computation with unitary
interpolation. To simplify, choosing s = t/T allows to evolve the Hamiltonian over the interval s ∈ [0, 1].
The condition on the speed of the evolution of the Hamiltonian to fulfill adiabatic evolution is stated

by the adiabatic theorem, which exists in many variants. Some versions of the theorem statements are
approximated conditions and require less restrictions on the Hamitonians involved in the calculus. More
rigorous versions of the theorem have restrictions on the choice of the Hamiltonian and specified for each
restriction how much the evolution needs to slow down to keep the system in the same eigenstate, for
example the ground state. The costs of applying AQC can be directly connected to the conditions stated
by the adiabatic theorem. Then it is possible to calculate, if it is worth to carry out the computation
with AQC.
The idea of using adiabatic evolution has been generalized to non-optimization problem, which is the

case of adiabatic evolution using non-stoquastic Hamiltonians. The new generalized definition of AQC
with non-stoquastic Hamiltonians allowed to show that AQC is universal. Intuitively, it can be shown
that a circuit model can replicate the Hamiltonian of the adiabatic computation. Vice versa, also the set
of gates used in a circuit model to implement a unitary operation can be approximated by a Hamiltonian.
Although the system is universal, its application to calculus is limited. In fact, it is difficult to find the
ground state for some Hamiltonians. Moreover, the energy gap between ground state and first excited
state of the Hamiltonian can be too small and reduce the efficiency of the quantum speedup (costs and
energy gap are inversely proportional).
The review of AQC in this document is based on the results reported in Adiabatic Quantum Com-

putation by Albash and Lidar [1]. In Section II, we present some quantitative conditions stated by the

3

adiabatic theorem and how these conditions impact the cost of applying AQC. In Section III, one can
find the reciprocal simulations that lead to universality of AQC. Next to universality to solve compu-
tational problem, we briefly review decision problems such as the k-local Hamiltonian problem, which
belongs to a different class of problems, and can be solved with AQC too. In Section IV, we discuss
some successful applications of AQC architecture that lead to the same speedup obtained by the circuit
model. We report the adiabatic Grover’s algorithm, the adiabatic Deutsch-Jozsa algorithm, the adiabatic
Bernstein-Vazirani algorithm, the glued trees problem and Google PageRank algorithm. In Section V, we
discuss stoquastic AQC and explain how it is different from AQC. In Section VI, we present a description
of adiabatic gate teleportation, which combines adiabatic evolution with circuit model’s gates. This part
of this review on AQC is based on Adiabatic Gate Teleportation by Bacon and Flammia [2]. Concluding
remarks are stated in Section VII.

II. CONDITIONS AND COSTS OF AQC

A. The adiabatic theorem

According to [1], to realize the Hamiltonian evolution sufficiently slow for the system to stay in the same
initial eigenstate j, the state |εj(t)⟩ must fulfil one of the following approximated or rigorous condition
or other versions of the theorem.
The more popular and probably oldest approximated criterion is:

max
t∈[0,tf]

|⟨εi|∂tεj⟩|
|εi − εj |

= max
t∈[0,tf]

|⟨εi|∂tH|εj⟩|
|εi − εj |2

≪ 1 , ∀i ̸= j , (2.1)

where tf is the final time. When the time-dependent Hamiltonian is initialized in the ground state of
the first instantaneous Hamiltonian, the indexes i, j are 1, 0, respectively. This means that for a system
initialized in the ground state, the evolution has to last at least tf , to be with high probability close to
the instantaneous ground state of the Hamiltonian calculated at time tf .

The approximated condition 2.1 on the states can be generalized to another approximated and more
recent criterion 2.2 which works for Hamiltonians, which have eigenstates with oscillating population (for
example when the Hamiltonian have a driving term):

1

tf
max
s∈[0,1]

|⟨εi(s)|∂sH(s)|εj(s)⟩|
|εi(s)− εj(s)|2

≪ 1 , ∀i ̸= j , (2.2)

where s = t/tf .
A rigorous version of the theorem states a possible upper bound on the time tf , which for a generic

Hamiltonian has at worst inverse cubic spectral gap dependence:

tf ≫ max

{
max
s∈[0,1]

∥∥H(2)(s)
∥∥

∆2(s)
, max
s∈[0,1]

∥∥H(1)(s)
∥∥

∆2(s)
, max
s∈[0,1]

∥∥H(1)(s)
∥∥2

∆3(s)

}
, (2.3)

where ∆ ≡ mins∈[0,1] ∆(s) = mins∈[0,1] ε1(s) − ε0(s) is the spectral gap, which for simplicity has been
chosen between the first excited state and the ground state. The norm is the operator norm.
There exists a rigorous version of the theorem, that “sacrifices” the generic Hamiltonian to get inverse

square energy gap dependence as obtained in the approximated version of the theorem (Equations 2.1
and 2.2):

tf ≥ K

∆2
| ln(∆/h)|6α, (2.4)

where K > 0, α > 1 and ∆ ≪ h ≡ ∥H(0)∥ = ∥H(1)∥. In this case the Hamiltonian must be bounded,
infinitely differentiable and in the Gevrey class Gα.

To get an exponentially small error in the bound of tf , the Hamiltonian must satisfy again a Gevrey

condition and the bound gets inverse cubic gap dependent (tf ≫ C2

∆3). An alternative version to obtain
similar results to the approximated criterion (Equations 2.1 and 2.2) is estimated expressing tf as a

function of the path L =
∫ 1

0
∥|∂sε(s)⟩∥, tf > O(L/∆). L is the distance covered by an eigenstate |ε⟩ over

the schedule s(t) used to parameterize the Hamiltonian H[s(t)]. From L ≥ maxs ∥∂sH(s)∥ /∆ follows:

tf ∼ O(max
s

∥∂sH(s)∥ /∆2). (2.5)

These results show the inverse dependence between spectral energy gap and run time. When the spectral
energy gap is large, the upper bound on the run time is low. In this case, the evolution can be faster.
In fact, since the spectral energy gap is large, there is also a lower probability for the system to jump to
higher eigenstates.

4

B. Costs of AQC

The costs of using adiabatic quantum computing depends on the upper bound of the run time tf
(predicted by the adiabatic theorem) and on the energy scale of the time-dependent Hamiltonian:

cost = tf max
s

∥H(s)∥ . (2.6)

Given the energy gap dependence of the upper bound of tf , the cost of running AQC depends on the
energy gap, which is for certain Hamiltonian difficult to estimate. One way to decrease the cost is to
speedup the evolution interval (lower run time) amplifying the energy gap (Section III B).

III. “UNIVERSALITY” OF AQC AND HAMILTONIAN COMPLEXITY THEORY

A. Equivalence to circuit model

Definition 1 (Universal Adiabatic Quantum Computation). “A time-dependent Hamiltonian H(t), t ∈
[0, tf], is universal for AQC if, given an arbitrary quantum circuit U operating on an arbitrary initial state
|ψ⟩ on n p-state particles and having depth L, the ground state of H(tf) is equal to U |ψ⟩ with probability
grater than ϵ > 0, the number of particles on which H(t) operates on is poly(n) ∀t, and tf = poly(n,L)”
[1].

There exist various method to define a Hamiltonian, which implements the circuit model. At the same
time, AQC can be implemented within the circuit model. The equivalence between AQC and circuit
model (which is universal) makes AQC universal too. The two models simulate each other up to a
polynomial overhead between depth (CM) and run time (AQC).

1. From CM to AQC

The circuit model can simulate AQC, because it can approximate the unitary operator U(tf , 0) =

Texp[−i
∫ tf
0
dtH(t)], which describes the evolution of the system whereH(t) = (1−t/tf)H0+t/tfH1 is the

time-dependent Hamiltonian. H0 andH1 can be written with few-qubits unitaries choosingH0 = −∑
i σ

x
i

and H1 to be 2-local in order to simplify further approximations on the unitary operator U(tf , 0). To
approximate the unitary operator, which the circuit model can implement, one first needs 2 approxima-
tion.
The first approximation consists into writing U(tf , 0) as the product of M unitaries U ′(tf , 0) =

ΠM
m=1e

−i∆tH′
m without time-independent Hamiltonian (Hm = H(m∆t)). The error of this approxi-

mation over the Hamiltonians, bounded by 1
M ∥H1 −H0∥ ∈ O(poly(n)/M), leads to the unitary operator

approximation error O(
√
tfpoly(n)/M).

The second approximation consists into applying Baker-Campbell-Hausdorff formula and neglecting

the commutator term: ΠM
m=1e

−i∆t[(1−m∆t
tf

)H0+
m∆t
tf

H1] 7→ ΠM
m=1e

−i∆t(1−m∆t
tf

)H0
e
−i∆tm∆t

tf
H1

. The error of

this approximation is O(
t2f
M2 ∥H0H1∥).

Combining the 2 approximations:

U(tf , 0) 7→ ΠM
m=1e

−i∆tH′
m 7→ ΠM

m=1e
−i∆t(1−m∆t

tf
)H0

e
−i∆tm∆t

tf
H1
, (3.1)

leads to the total error O(poly(n)t2f/M), where n is the system size, tf the run time needed for AQC
and M the number of unitaries. Therefore, the circuit model can simulate AQC with up to polynomial
overhead.

2. From AQC to CM

To realize adiabatic simulation of a n-qubit quantum circuit the Hamiltonian of AQC must encode
information about the initial state |0...0⟩ and the unitary gates U1, ...UL of the circuit. At the same time,
the circuit has to be described with states |α(l)⟩ obtained after the application of the l-th gate. Let
|α(0)⟩ = |0...0⟩. The l-th gate has a position within the circuit. Therefore, the state |α(l)⟩ is not enough
to describe the circuit. One way to define a new state which encode both the state |α(l)⟩ and the position
of the l-th gate is to use Feynman clock register:

|γ(l)⟩ ≡ |α(l)⟩ ⊗ |1l0L−l⟩c, (3.2)

5

where |1l0L−l⟩c is the state of the Feynman clock, which in this state is set after the l-th gate. The initial
Hamiltonian is chosen to have |γ(0)⟩ = |α(0)⟩ ⊗ |0L⟩ as its ground state with energy 0.
The ground state |η⟩ of the final Hamiltonian, which is supposed to encode the circuit, is defined as a

normalized superposition of the states |γ(l)⟩:

|η⟩ = 1√
L+ 1

L∑
l=0

|γ(l)⟩. (3.3)

The final Hamiltonian is defined so that |η⟩ is its ground state with energy 0.
The time-independent Hamiltonian of AQC is

H(s) = (1− s)Hinit + sHfinal = Hinput +Hc + (1− s)Hc−init +
s

2
Hcircuit, (3.4)

where

Hinit = Hc−init +Hinput +Hc = |11⟩c⟨11|+
n∑

i=1

|1i⟩⟨1i| ⊗ |01⟩c⟨01|+
L−1∑
l=1

|0l1l+1⟩c⟨0l1l+1|, (3.5)

Hfinal =
1

2
Hcircuit +Hinput +Hc =

L−1∑
l=1

Hl +

n∑
i=1

|1i⟩⟨1i| ⊗ |01⟩c⟨01|+
L−1∑
l=1

|0l1l+1⟩c⟨0l1l+1|. (3.6)

The term Hc =
∑L−1

l=1 |0l1l+1⟩c⟨0l1l+1| is used to shift illegal Feynman clock states to energy equal 1,
instead of energy equal 0 like for legal clock state. Illegal clock state are those states which contains the
sequence 01. The term Hc−init = |11⟩c⟨11| forces the first initial Feynman clock to be |0L⟩c. Applying
the term Hinput =

∑n
i=1 |1i⟩⟨1i| ⊗ |01⟩c⟨01| to the state |0L⟩c leads to the state |0n⟩. The last term Hl is

chosen to mimic the unitary operation Ul generated by the l-th gate:

H1 = 1 ⊗ |0102⟩c⟨0102| − U1|1102⟩c⟨0102|
− U†

1 |0102⟩c⟨1102|+ 1 ⊗ |1102⟩c⟨1102|, (3.7)

H2≤ℓ≤L−1 = 1 ⊗ |1ℓ−10ℓ0ℓ+1⟩c⟨1ℓ−10ℓ0ℓ+1|
− Uℓ|1ℓ−11ℓ0ℓ+1⟩c⟨1ℓ−10ℓ0ℓ+1|
− U†

ℓ |1ℓ−10ℓ0ℓ+1⟩c⟨1ℓ−11ℓ0ℓ+1|
+ 1 ⊗ |1ℓ−11ℓ0ℓ+1⟩c⟨1ℓ−11ℓ0ℓ+1|, (3.8)

HL = 1 ⊗ |1L−10L⟩c⟨1L−10L|
− UL|1L−11L⟩c⟨1L−10L|
− U†

1 |1L−10L⟩⟨1L−11L|
+ 1 ⊗ |1L−11L⟩c⟨1L−11L|. (3.9)

The efficiency of using this construction to produce a Hamiltonian, which realizes a circuit, is measured
finding tf . One can find that tf scales as a polynomial in L. However, this method to simulate a circuit in
AQC does not necessarily lead to the same quantum speedup, which is obtained in the circuit model. One
example is the adiabatic Grover algorithm discussed in Section IVA. In fact, the choice of the schedule
can still slow down the evolution and increase the cost of AQC.

B. Universality limits

As mentioned in Section II B the cost of running AQC depends on the energy gap between ground
state and first excited state. For some application it is hard to estimate this gap and evaluate whether
it worth to carry out AQC. In certain cases the gap is too large. As a result, the time needed for AQC
and its cost would be too large. Most of the adiabatic algorithms implemented with AQC do not lead
to speedup over classical results. One way to improve this situations is making the energy gap larger
to obtain a lower upper bound on the time. One way is adiabatic gap amplification, which leads to a
quadratic energy gap amplification. Such amplification requires frustration free Hamiltonians,“a sum

over positive semi-definite operators H =
∑L

k=1 akΠk, with ak ∈ [0, 1] and L = polylog(N)” [1]. In the
context of quantum circuit with Q gates unitary operators, L is polynomial in Q. The projector Πk

describe the interaction between spins of nearest particles. This model makes the adiabatic evolution

6

time polynomial in Q. To observe the quadratic square amplification, the Hamiltonian H(s) must be
modified to the Hamiltonian H̄(s) as

H(s) =

L∑
k=1

akΠk(s) H̄(s) =

L∑
k=1

√
akΠk(s)⊗ (|k⟩⟨0|+ |0⟩⟨k|) (3.10)

with s ∈ [0, 1] and ancillas |0⟩, |k⟩. As a consequence, the eigenvalues {λj} for j > 1 and the ground state

|ψ(s)⟩ of H(s) lead to the eigenvalues {±
√
λj} for j > 1 and the degenerate ground state |ψ(s)⟩|10 . . . 0⟩

of H̄(s), while the ground state eigenvalue remains 0.
Note that the Hamiltonian H̄(s) can be further simplified to a single particle subspace (writing the

ancilla |k⟩ 7→ |0 . . . 010 . . . 0⟩): H̄(s) =
∑L

k=1

√
akΠk(s) ⊗ (σ+

k σ
−
0 + σ−

k σ
+
0) with Pauli operators σ± =

(σx ± iσy)/2. Furthermore, adjusting the Hamiltonian adding penalty terms Z0 = 1
4

√
∆(1 + σz

0), Z =

(L− 2)1 −∑L
k=0 σ

z
k allows to remove degeneracy of the ground state

H ′(s) =
1

L1/d

[
L∑

k=1

√
akΠk(s)⊗ (|k⟩⟨0|+ |0⟩⟨k|) +

1

4

√
∆(1 + σz

0)

]
+ Z.

C. Hamiltonian complexity theory

AQC’s approach to find a solution can be used to solve some decision problems too. For example the
k-local Hamiltonian problem and the k-SAT problem.
The k-local Hamiltonian problem decides whether the smallest eigenvalue of H =

∑r
i=1Hi (with

r = poly(n), ∥Hi∥ = poly(n)) is smaller than the threshold a, or all the eigenvalues are larger than the
threshold b, where inputs a and b are chosen so that b− a > 1

poly(n) .

This problem can be hard to solve depending on the Hamiltonian, sometimes even for quantum com-
puters.
AQC can be used to solve the k-local Hamiltonian problem, defining the time-dependent Hamiltonian

of AQC with the k-local Hamiltonian as final Hamiltonian. Once the ground state is found, one can
compute the energy eigenvalue of the ground state of the k-local Hamiltonian of the problem and observe
whether is smaller or bigger than a and b.
The k-SAT problem consists into finding whether there exists literals X = (x1, . . . , xn) such that

Φ(X) = 1 where Φ = C1 ∧ C2 ∧ · · · ∧ Cr is a Boolean formula with clauses Ci = xi1 ∨ xi2 ∨ · · · ∨ xik
and xi ∈ {0, 1}. Solving the 3-local Hamiltonian problem with AQC leads to the solution of the 3-SAT
problem, since it can be mapped to the 3-local Hamiltonian problem. Applying the 3-local Hamiltonian
to the state |X⟩ = |xi1 , xi2 , xi3⟩, each 3-local projectors Hi is chosen to give eigenvalue 0 and eigenvalue 1
for satisfying and unsatisfying assignments, respectively. Therefore, when the 3-local Hamiltonian applied
to the state |X⟩ leads to an eigenvalue larger than 0 the 3-SAT problem is unsatisfiable.

1. Decision problems classes

As reported in [1] a decision problem Q is in the class of NP problem iff there exists a verifier V so
that for all inputs η:

• “if Q(η) = 1, then there exists a witness X such that V (η,X) = 1”[1],

• “if Q(η) = 0, then for all witnesses X we have V (η,X) = 0”[1].

The problem Q is NP-complete when it is in NP and every problem problem in NP can be solved using
an algorithm that solves for the problem Q. When this reduction is in polynomial time, the problem Q
is NP-hard.
The class MA (Merlin Arthur) is the probabilistic version of NP. The verifier V must fullfil probabilstic

conditions Pr(V (η,X) = 1) ≤ 2
3 and Pr(V (η,X) = 1) ≥ 1

3 instead of V (η,X) = 1 and V (η,X) = 0,
where the probabilities do not have to be necessarily (2/3, 1/3).
The class QMA is the quantum version of MA, that works with quantum computers. In quantum

computers the MA witness X becomes a state |X⟩ ∈ (C2)⊗poly(|η|). A decision problem Q is in the class
QMA iff there exists a verifier algorithm (efficient: polynomial time) V so that for all inputs η:

• “if Q(η) = 1, then there exists a witness |X⟩ such that Pr(V (η, |X⟩) = 1) ≥ 2
3 (completeness)”[1],

• if Q(η) = 0, then for all witnesses |X⟩ we have Pr(V (η, |X⟩) = 1) ≤ 1
3 (soundness)”[1].

According to [1], AQC can be used to solve some decision problems, working as the verifier algorithm.
At the same time, the study of Hamiltonian complexity theory, especially QMA-completeness helps to
understand universality of AQC.

7

IV. THEORY OF AQC APPLYED TO ALGORITHMS

A. Grover algorithm

Unstructure search consists into finding a specific item x0 in the unsorted set {1, .., N} such that
f(x0) = 1 only for x0 where f : {1, ..., N} → {0, 1}. The problem of unstructure search can be solved
classically by applying f to every element of the set {1, .., N}. This is realized by querying the research to
an oracle, which can identify x0, until the oracle finds x0. The solution provided by Grover algorithm’s
for quantum computers allowed to save time and reach up to a quadratic speedup over the classical
computer result. The approach with circuit model consists also into querying the initially prepared state
through a combination of phase oracles and Hadamard gates, but only up to

√
N times. It shows the

quantum speedup O(
√
N) of the circuit model.

The adiabatic Grover’s algorithm can reach the same speedup of the circuit model version. To simplify
the problem the Hamiltonian is defined using s = t/tf so that s ∈ [0, 1]. The time-dependent Hamiltonian
H(s) = (1−A(s))H0 +A(s)H1 and its schedule A(s) are chosen to encode the problem at the beginning
with H0 and to find the solution at the end with H1. The choice of A(s) affects the speedup of the
algorithm. The first attempt is to set A(s) = s. As a consequence, H0 is the initial Hamiltonian and H1

is the final Hamiltonian.
The initial Hamiltonian H0 = 1 − |ϕ⟩⟨ϕ| is defined using the state |ϕ⟩ = 1√

N

∑N−1
i=0 |i⟩ = |+⟩⊗n with

⟨ϕ|ϕ⟩ = 1. Because of this choice, those states |ψj⟩ orthogonal to the state |ϕ⟩ have eigenvalue λj = 1
Eigenstates of H0 are |ψ0⟩ = |ϕ⟩ and |ψj⟩ with eigenvalues λ0 = 0 and λj = 1, respectively.
The final Hamiltonian H1 = 1 − |m⟩⟨m| is defined using the state |m⟩ of the binary representation m

of the specific item x0. Eigenstates of H1 are |ψ0⟩ = |m⟩ and |ψj⟩ with eigenvalues λ0 = 0 and λj = 1,
respectively. The state |ϕ⟩ can be written as a sum of the |m⟩ state and those states orthogonal to |m⟩:

|ϕ⟩ =
√
N − 1√
N

1√
N − 1

N−1∑
i=0,i̸=m

|i⟩+ 1√
N

|m⟩ =
√
N − 1√
N

|m⊥⟩+ 1√
N

|m⟩, (4.1)

where |m⊥⟩ = 1√
N−1

∑N−1
i=0,i̸=m |i⟩.

Since |ϕ⟩ can be written with |m⟩ and |m⊥⟩, also the time-dependent Hamiltonian H(s) can be written
in the two-dimensional subspace span{|m⟩, |m⊥⟩}:

[H(s)]|m⟩,|m⊥⟩ =
1

2
12×2 −

∆(s)

2

(
cos θ(s) sin θ(s)
sin θ(s) − cos θ(s)

)
, (4.2)

where ∆(s) =
√
(1− 2s)2 + 4

N s(1− s), cos θ(s) = 1
∆(s) [1 − 2(1 − s)(1 − 1

N)], sin θ(s) = 2
∆(s) (1 −

s) 1√
N

√
1− 1

N . Equation 4.2 shows that H(s) have only 2 eigenvalues ϵ0 = 1
2 (1 − ∆(s)) and ϵ1(s) =

1
2 (1 + ∆(s)) different from 1. The other N-2 eigenstates of the system have eigenvalue λ = 1.
The highest lower bound on the time tf is measured at time s = 1/2 where the distance ∆min =

ϵ0 − ϵ1 = 1√
N

= 2−n/2 becomes minimal. The adiabatic condition does not lead to a speedup over the

classical computation. To obtain the same speedup of the circuit model, one must slow down the speed
of the schedule A(s) only where the energy gap is minimal (s = 1/2), not necessarily over the entire
interval. In fact, where the gap is smaller, it is more probable that the actual state of the time-dependent
Hamiltonian gets promoted to the higher state and evolve in the wrong energy level (level which at the
end of the evolution is not close to the level containing the solution of the problem). One way to find the
quadratic speedup is to choose the Ansatz

∂sA = c∆p[A(s)] c =

∫ 1

0

∆−p[A(s)]∂sAds =

∫ A(1)

A(0)

∆−p(u)du, p, c > 0, (4.3)

so that A(0) = 0, A(1) = 1. As a consequence, the rigorous adiabatic condition for generic Hamiltonians

leads to the condition tf ≫ 2π
√
N [1 + log(2N)]. Carrying out he computation with p = 2 leads to the

quadratic speedup tf → π
2c′

√
N .

B. Deutsch-Josza algorithm

The Deutsch-Josza algorithm determines whether the function f : {0, 1}n 7→ {0, 1} is either constant
or balanced. While classically the Deutsch-Josza algorithm’s job takes up to 2n−1 + 1 queries, the same

8

process in the circuit model needs only 1 query. The adiabatic Deutsch-Josza algorithm reaches the same
quantum speedup of the circuit model over the classical algorithm.
The time-dependent Hamiltonian which interpolates between initial and final Hamiltonian can be

defined either using linear interpolation (as for the adiabatic Grover algorithm) or using unitary interpo-
lation.
In case of unitary interpolation, the evolution of the time-dependent Hamiltonian is

H(s) = Ũ(s)H(0)Ũ(s), (4.4)

with Ũ(s) = exp (iπ2 sU), Ũ(1) = iU . U is a unitary matrix. The initial Hamiltonian H(0) is defined
again as the projections on the state ϕ⟩, written H(0) = ω

∑n
i=1 |−⟩i⟨−| where ω is the scale. The

unitary transformation U is the diagonal matrix U = diag[(−1)f(0), · · · , (−1)f(2
n−1)] which solves the

Deutsch-Jozsa problem U |x⟩ = (−1)f(x)|x⟩ with x ∈ {0, 1}n. The final Hamiltonian H(1) is defined to
encode the final solution in its ground state |ψ(1)⟩ = U |ψ(0)⟩, which is the case when H(1) = UH(0)U†.

Applying the adiabatic theorem condition leads to the time interval tf ≫ 1/ω. Since, the bound on
the time tf is independent of n, the run time of the algorithm is O(1).

C. Bernstein-Vazirani algorithm

The Bernstein-Vazirani algorithm tells whether the number of 1 bits in common between w ∈ {0, 1}n
and the unknown string a ∈ {0, 1}n is even (fa(w) = w⊙a = 0) or odd (fa(w) = w⊙a = 1). In the basis
{|+⟩, |−⟩}, the state of the function can be written as |fa(w)⟩ = 1√

2

(
|+⟩+ (−1)fa(w)|−⟩

)
. Classically,

solving this problem would require to check every bit of the string, which would take n queries in total.
The quantum solution of both circuit model (depth) and AQC (time) shows polynomial speedup O(1)
over the classical approach. The adiabatic Bernstein-Vazirani algorithm’s time dependent Hamiltonian
is different from the adiabatic Grover Hamiltonian and the adiabatic Deutsch-Josza Hamiltonian since it
acts on two separated subsystems A (n qubit) and B (1 qubit). To solve the problem, the goal is to find
a state (in the subsystem A), which encodes all the bits of a. The time-dependent Hamiltonian:

H(s) = (1− s)H0 + sH1 =
∑

w∈{0,1}n

|w⟩A⟨w| ⊗Hw(s), (4.5)

withHw(s) =
1−s
2 (1B − σx

B)− s
2

(
1B + (−1)fa(w)σz

B

)
interpolates linearly between the initial Hamiltonian

H0 and the final Hamiltonian H1:

H0 =
1

2
(1A ⊗ (1B − σx

B)) =
1

2

∑
w∈{0,1}n

|w⟩A⟨w| ⊗ (1B − σx
B) ,

H1 =
∑

w∈{0,1}n

hw =
∑

w∈{0,1}n

−1

2
|w⟩A⟨w| ⊗

(
1B + (−1)fa(w)σz

B

)
. (4.6)

The ground state of the initial Hamiltonian |ψ(0)⟩ =
∑

w∈{0,1}n cw|w⟩A ⊗ |+⟩B with cw = 2−n/2∀w
has eigenvalue 0. The adiabatic evolved state is:

|Ψ(tf)⟩ =
1

2n/2

∑
w∈{0,1}n

|w⟩A ⊗ exp

[
−itf

∫ 1

0

ε0,w(s)ds

]
|fa(w)⟩B , (4.7)

with ε0,w(s) the instantaneous ground state energy of Hw(s). The final state is obtained evolving only the
subsystem B, which contains only one qubit. As a result, the evolution is O(1). Writing the state |fa(w)⟩
in the {|+⟩, |−⟩} basis, splits the final state|Ψ(tf)⟩ into two states |Ψ+⟩, |Ψ−⟩ with the same probability
and eigenvalues 1,−1:

|Ψ+⟩ =
1

2n/2

∑
w∈{0,1}n

|w⟩A ⊗ |+⟩B = |Ψ(0)⟩, (4.8)

|Ψ−⟩ =
1

2n/2

∑
w∈{0,1}n

|w⟩A ⊗ (−1)fa(w)|−⟩B =
1

2n/2

n−1⊗
k=0

(|0⟩k + (−1)ak |1⟩k)A ⊗ |−⟩B , (4.9)

using
∑

w∈{0,1}n(−1)fa(w)|w⟩A =
⊗n−1

k=0 (|0⟩k + (−1)ak |1⟩k)A. Therefore, when the measured eigenvalue

is −1, the final state encode the bits of a, because k-th qubits |+⟩k ⇒ ak = 0 and |−⟩k ⇒ ak = 1. When
the measured eigenvalue is +1 the measurement has to be repeated. This result highlights that exists a
probability of failing the measurement. After m tries, the probability to succeed is 2−m.

9

D. Glued trees problem

j = 0 j = 1 j = n j = 2n + 1.j = n + 1

(a) Two binary trees with the last symmetric
columns of leaves randomly connected with two

vertices of the opposite column. From [1].

0 0.2 0.4 0.6 0.8 1

s

-0.5

-0.4

-0.3

-0.2

-0.1

0

E
ig

en
v

al
u

es

s1 s2 s3 s4

�10 / 2�n/2

�21 � c0/n3

�10 � c/n3

�10 � c/n3

�0(s)

�1(s)

�2(s)

(b) Evolution of the first three states’ eigenvalues
and their gap to each other with time s. From [1].

Figure 1: The glued tree problem sketch and eigenvalues evolution.

The glued tree problem’s goal consists into finding the name of one origin vertex following the shortest
path which connects the origin vertices of two binary trees connected at random. Figure 1 shows an
example where the depth n of the binary trees is n = 4. The red dots consists into the vertices (in total
N = 2n+2 − 2), which are labelled by randomly chosen 2n-bit string. The two columns of leaves between
the trees are connected randomly with two vertices of the opposite column. The difficulty of the problem
consists into finding the path knowing only the adjacent vertices of the vertex which is being considered.
Using an oracle, accessing this oracle would give the output of the next vertex. Classically, to solve the
glued tree problem would require a subexponential in n number of oracle calls. The adiabatic quantum
solution to the problem can be find in polynomial time (tf ≈ n6). Let the initial and final Hamiltonian:

H0 = −|a0⟩⟨a0| H1 = −|aN−1⟩⟨aN−1|, (4.10)

where a0 and aN−1 are the bit strings of the origin vertices of the trees. The states to the Hamiltonian
are |cj⟩ = 1√

Nj

∑
i∈j−th column |ai⟩ with Nj = 2j for 0 ≤ j ≤ n and Nj = 22n+1−j for n+1 ≤ j ≤ 2n+1.

The time-dependent Hamiltonian is:

H(s) = (1− s)αH0 − s(1− s)A+ sαH1, (4.11)

where A is another Hamiltonian defined as ⟨cj |A|cj+1⟩ =
√
2 for j = n otherwise equals 1, α ∈ (0, 1/2)

is a constant and s(t) the schedule, which is chosen to evolve adiabatic if the energy gap scales as 1/n3.
The Hamiltonian keeps the evolution of the state in the subspace {cj}. Figure 1b shows the energy of

the ground state and the first excited state. Around the values sx = α/
√
2 and 1 − sx the energy gap

closes exponentially. Around these points there are two areas (s ∈ [s1, s2), s ∈ [s3, s4)) where the energy
gap scales as 1/en, that makes the evolution non-adiabatic since the states will transit to the first excited
state with high probability. In case s ∈ [0, s1) ∪ [s2, s3) ∪ [s4, 1), the evolution stays in the same state,
since the evolution is sufficiently adiabatic, because the spectral energy gap is larger.

E. Adiabatic PageRank algorithm

Adiabatic PageRank algorithm’s goal is to prepare a state replicating the PageRank vector p⃗ through
adiabatic quantum computation. The algorithm combined with other quantum protocols can reach a
regular quantum speedup over the classical version, but without this combination the adiabatic algorithm
would not be more efficient than the classical version. The PageRank vector p⃗ (eigenvector of the Google
matrix with eigenvalue 1) can be computed with power method which converges, since the Google matrix
G is upper bounded:

p⃗ = lim
k 7→∞

Gkp⃗0 G := αPT
2 + (1− α)E. (4.12)

The vector p⃗0 could be any probability vector. The variable E ≡ |v⃗⟩⟨e⃗| is computed for example with
vector v⃗ = e⃗/n where n is the size of the web-graph (number of nodes). The probability parameter

10

α ∈ (0, 1) describes the movement of the walker on the web-graph, whether it follows the nodes structures
or it hopes. The matrix P2 is a stochastic matrix, defined as a modified version of the transition matrix
P1:

P1(i, j) =

{
1/d(i) if (i, j) is an edge of the directed adjacent matrix;
0 else,

(4.13)

with d(i) is the out-degree of the ith node. The P1 rows having zero entry elements gets replaced in P2

by the vector e⃗/n, whose entries are 1/n. The initial h0 and final Hamiltonians h1 to realize the adiabatic
algorithm are defined as non-local Hamiltonians (notation h):

h1 = h(G) ≡ (1 −G)†(1 −G) h0 = h(Gc) ≡ (1 −Gc)
†(1 −Gc), (4.14)

where G is a generic Google matrix and Gc is the Google matrix associated with the complete graph.
The ground state of the final Hamiltonian is |π⟩ ≡ p⃗/ ∥p⃗∥, because 1 is the maximal eigenvalue of
G and its eigenvector is the PageRank vector p⃗. The ground state of the initial Hamiltonian h0 is
|ψ(0)⟩ = ∑n

j=1 |j⟩/
√
n. The time-dependent Hamiltonian is

h(s) = (1− s)h0 + sh1. (4.15)

This adiabtic evoulution on random web-graph takes the run time tf ∼ (log log n)b−1(log n)b where b > 0.

V. STOQUASTIC AQC

Stoquastic adiabatic quantum computation (StoqAQC) is AQC with k-local stoquastic Hamiltonians,
which are Hamiltonians characterized by real nonpositive off-diagonal matrix elements (with respect
to a certain basis). In case of the computational basis, the Hamiltonian H would be stochastic iff
⟨x|H|x′⟩ ≤ 0 ∀x, x′ ∈ {0, 1}n x ̸= x′. In order to restrict stoquasticity within this section to the
computational basis, the basis is chosen so that the initial Hamiltonian always carries a minus sign.
Furthermore, it is possible to generalize the definition of classes such as MA to the stoquastic version
StoqMA, where the verifier is stoquastic and allowed to do the final measurement also in the basis
{|+⟩, |−⟩}. Like in the case of non-stoquastic AQC with the problem of the k-local Hamiltonian, also
StoqAQC gives rise to a set of problems, the StoqAQCEval characterized by:

• “a continuous family of (k ≥ 2)-local (k fixed) stoquastic Hamiltonians H(s) =
∑r

i=1Hi(s) with
r = poly(n) and parameterized by s ∈ [0, 1]. For all i and all s, the non-zero entries of Hi(s) are
specified by poly(n) bits of precision, and ∥Hi(s)∥ = poly(n). The ground state energy gap ∆[H(s)]
satisfies ∆[H(s)] ≥ 1/poly(n) for all s”[1],

• “two real numbers a and b specified with poly(n) bits of precision, and b− a > 1/poly(n)”[1].

Since the k-local stoquastic Hamiltonian for k ≥ 2 is StoqMA-complete, StoqAQCEval is in StoqMA.
Those problem which are reducible in polynomial time to StoqAQCEval (BStoqP) are in StoqMA.

A. Simulation of stoquastic Hamiltonians

There are evidences, which show that stoqAQC might not be as powerful as universal quantum com-
putation. At the same time there is not a theorem, which rules out a potential quantum speedup of
StoqAQC. Two classical competitors are Path Integral Quantum Monte Carlo (PIQMC) and diffusion
Quantum Monte Carlo (D-QMC).
The first issue dealing with universality starts from the fact that the ground state of a stoquastic

Hamiltonian can be expressed as a linear combination with nonnegative amplitudes. As a consequence, the
ground state can be described with a classical probability distribution, which suggests the limits of finding
a quantum speedup. Moreover, stoquastic k-local Hamiltonian is not QMA-complete. Furthermore,
gapped StoqAQC can be simulated in PostBPP (can post select on some subset). “It suffices to call
an oracle for problems in PostBPP a polynomial number of times to efficiently sample from the ground
state of a gapped stoquastic Hamiltonian”[1]. As a consequence, assuming that StoqAQC could realize
universal quantum computation, would mean to be able to classically simulate quantum algorithms in
polynomial time, which leads to the impossible conclusion PostBPP=PostBQP.
There are examples where PI-QMC can not find the solution as fast as StoqAQC or it can not find the

solution at all due to topological obstructions. The first example is a sombrero-like potential for a single
particle with minimal radius r. The trajectories in imaginary time of the particle lies around the circle of
radius r. They lies with low probability away from the circle, because of the steep potential. As a result,

11

it takes several winding (exponential time) to shift winding number sector and PI-QMC won’t be able
to equilibrate. On the other hand, the adiabatic evolution requires polynomial time. In the ”bouquet of
circles” example PI-QMC do not necessarily converge and finding the ground state with this method is
less probable.
Using certain non-topological obstructions, for example the discrepancy between L1 and L2-

normalization, it is possible to simulate efficiently stoquastic adiabatic processes (polynomial time) while
the D-QMC simulations fail. D-QMC succeeds only allowing for exponential costs. An example consists
in the Hamiltonian H(s) = 1

n [L + b(s)W] − c(s)P with W the Hamming wight operator, L the graph
Laplacian and P = |0 · · · 0⟩⟨0 · · · 0| which is equivalent to:

H(s) = − 1

n

n∑
j=1

(
Xj +

1

2
b(s)Zj

)
− c(s)P. (5.1)

The schedules are:

b(s) =

{
2sb
b

c(s) =

{
0 s ∈ [0, 1/2)
(2s− 1)c s ∈ [1/2, 1]

. (5.2)

It follows that StoqAQC evolution converges to the ground state |0 · · · 0⟩ in polynomial time, since the
overall minimum gap at s = 0 is 2/n.
Dropping the assumption that the stoquastic adiabatic evolution has to evolve in the ground state, it

is possible to show that StoqAQC is universal. Universality of StoqAQC can be verified for excited state
evolution. In the case of 3-local Hamiltonian reported in this section it is also QMA-complete. Consider
the Hamiltonian:

HZZXX =
∑
i

diXi + hiZi +
∑
i≤j

Jx
ijXiXj + Jz

ijZiZj , (5.3)

with real coefficients di, hi, J
x
ij and Jz

ij . Writing HZZXX = −∑
k αkTk allows to eliminate the negative

matrix entries.
The matrix operators Tk ∈ {±Xi,±Zi,±XiXj ,±ZiZj} ∈ 2n × 2n (αk > 0) are symmetric and takes

values +1,−1, 0. These matrices are generalized to the 2-local or 3-local operators (permutation matrices)

T̃k ∈ 2n+1 × 2n+1 acting on n+ 1 qubits by changing the values as

1 →
(

1 0
0 1

)
, −1 →

(
0 1
1 0

)
, 0 →

(
0 0
0 0

)
. (5.4)

The new Hamiltonian acting on n+ 1 qubits:

H̃ZZXX = −
∑
k

αkT̃k (5.5)

is a (3-local) stoquastic Hamiltonian which is equivalent to H̃ZZXX = HZZXX ⊗ |−⟩⟨−|+ H̄ZZXX ⊗
|+⟩⟨+| where H̄ZZXX = −∑

k αk|Tk|.
The spectrum of H̃ZZXX separates into two sectors generated by the eigenstates |ε⟩ of HZZXX (L− =

|εj⟩ ⊗ |−⟩) and by the eigenstates |ε̄⟩ of H̄ZZXX (L+ = |ε̄j⟩ ⊗ |+⟩).
Because there are no interactions changing the ancilla qubit from |±⟩ to |∓⟩), the evolution in L−

remains there. The ground state in L− is not necessarily the ground state of the full Hamiltonian.

VI. ADIABATIC GATE TELEPORTATION

Adiabatic computation can be implemented also combined with other models such as the circuit model
and the holonomic model. For example, such a model can be a piecewise adiabatic evolution replicating
a quantum circuit step by step. Using this model it could be possible to realize a universal quantum
computer. To realize this type of Hamiltonians is necessary to understand quantum teleportation and
adiabatic teleportation. Quantum teleportation consist into transferring a qubit state “between distant
parties via an initial shared entangled state and two bits of classical communication”[2]. Adiabatic
teleportation realizes the swap via adiabatic evolution using a control scheme. This process can be
modelled by three qubits (first qubit to be swapped to the third qubit, second qubit necessary as control
qubit). The idea is to adiabatically evolve a Hamiltonian with Bell state in the qubit 1 and 2 as ground
state to a Hamiltonian which has the same bell state as ground state of qubit 2 and 3. The adiabatic
evolution can be described by the time dependent Hamiltonian:

H(s) = (1− s)Hi + sHf , (6.1)

12

where s is the schedule and Hi,Hf are the initial and final Hamiltonians:

Hi = −ω(X2X3 + Z2Z3) Hf = −ω(X1X2 + Z1Z2) (6.2)

with X,Z single-qubit Pauli matrices, ω the energy scale. The ground state are spanned by |0⟩⊗|ϕ⟩,|1⟩⊗
|ϕ⟩ at the beginning and by |ϕ⟩ ⊗ |0⟩, |ϕ⟩ ⊗ |1⟩ at the end.

The time-dependent Hamiltonian can be written using logical qubit operators (X̄1 = XXX, X̄2 =
IXX, X̄3 = XXI, Z̄1 = ZZZ, Z̄2 = ZZI, Z̄3 = IZZ):

H(s) = −ω(1− s)(X̄2 + Z̄3)− ωs(X̄3 + Z̄2). (6.3)

Performing the evolution adiabatically would drag the eigenstates of X̄2, Z̄3 related to the eigenvalue
+1 to the eigenstates of Z̄2, X̄3 with eigenvalue +1.
From the minimum energy gap

√
2ω, it is possible to estimate that the minimal time needed by the

adiabatic evolution to stay in the ground state is T ≫ O(1
ω).

In order to obtain universality the swapping performed in adiabatic quantum teleportation is combined
with a single qubit gate implemented in the initial Hamiltonian to obtain Adiabatic Gate Teleportation
(AGT). One way to realize single-qubit unitary is modifying the initial Hamiltonian according to H ′

i =
U3HiU3 where U3 is a unitary operation which rotates the third qubit. For example, to realize a Hadamard
gate the initial Hamiltonian is modified to H ′

i = −ω(X2Z3 + Z2X3). One way to prepare these rotated
Hamiltonians is Adiabatic Gate Preparation (AGP), which consists into adiabatically evolve the initial

state of the form Hi = −ω(XaXb + ZaZb) to the initial Hamiltonian H ′
i = UbHiU

†
b for certain Ub.

Matrices A and B that generate SU(2) can be chosen as the Ub matrix to realize universal single qubit
operations. Two possible choices of A and B are:

A =
1

2

(
1 + i

√
2 1

1 −1 + i
√
2

)
B =

(
1 0
0 eiπ/4

)
. (6.4)

The result can be generalized to two-qubit gates (the two-quibit gate is applied to two final output
qubits). In case of controlled-phase (CZ) between two logical qubits (between third and sixth physical
qubit) the Hamiltonians are:

Hi = −ωCZ(X2X3 + Z2Z3 +X5X6 + Z5Z6)C
†
Z Hf = −ω(X1X2 + Z1Z2 +X4X5 + Z4Z5). (6.5)

(a) Twice three qubits interaction (green) and
two-body coupling interaction (blue). From [2].

(b) Two-body interaction (blue), strong coupling
interaction in the encoded subspace (green) and
coupling between logic qubits (red). From [2].

Figure 2: Sketches of the initial and final qubits involved in the adiabatic evolution process.

The challenging part of such a Hamiltonian is the interaction with 3 qubits, in factHi = −ωCZ(X2X3+

Z2Z3+X5X6+Z5Z6)C
†
Z = −ω(X2X3Z6+Z2Z3+Z5Z6+Z3X5X6). The Hamiltonian can be generalized

to the ideal Hideal = −λ(XL
2 X

L
3 Z

R
3 + ZL

2 Z
L
3) + [L ↔ R] where [L ↔ R] is the same with exchanged

left and right qubits (See Figure 2a). To avoid three body interactions, “one replaces one of the qubits
in a three qubit interaction by an encoded qubit across two qubit” [2]. To realize these interactions, it
is necessary to add a fourth physical qubit for each logical qubit L and R (See Figure 2b). The new
encoded subspace is realized by qubit 3 and 4 with encoded operators X̄3 = X3X4, Z̄3 = Z3 or Z4. The
Hamiltonian written with the encoded operators is:

Htarget = −λ(XL
2 X̄

L
3 Z̄

R
3 + ZL

2 Z̄
L
3)− ω(ZL

3 Z
L
4) + [L↔ R]. (6.6)

13

The term ω(ZL
3 Z

L
4) consists into strong coupling to keep the encoded term in the same subspace.

An alternative choice is to use two-body gadget Hamiltonians as in:

Hi = −λ(XL
2 X

L
3 +XL

4 Z
R
4 + ZL

2 Z
L
3)− ω(ZL

3 Z
L
4) + [L↔ R]. (6.7)

Both Hi and Htarget are evolved towards

Hf = −λ(XL
1 X

L
2 + ZL

1 Z
L
2)− ω(ZL

3 Z
L
4) + [L↔ R]. (6.8)

According to [2] the energy gap of the evolution is by bounded ∆E(s) ≤ ωr2 for rλ/ω < 0.5.
AGT distinguishes itself from Holonomic Quantum Computing (HQC), since it also uses adiabatic

evolution to produce a quantum gate but not as a cycle evolution like in HQC.

VII. SUMMERY AND CONCLUDING REMARKS

To conclude Adiabatic Quantum Computing can solve problems, which can be solved by the quantum
circuit model. The AQC process speedup is polynomially close to the solution obtained by the circuit
model for every algorithm. However, the limitations on certain Hamiltonians affect the speed of the
evolution. Each algorithm deserves a separate analysis and discussion to improve its cost with AQC.
For some of the fundamental algorithms of quantum information processing, the separate extra analysis
shows that AQC reach the same speedup of the circuit model (See Section IV). In this sense, these field
needs further research.
Moreover, AQC universality helps to understand QMA-completeness and vice-versa.
It is also an ongoing discussion how powerful is StoqAQC respect to AQC and if such a model can

reach a speedup over classical algorithms. It seems that classical solutions reach the results of StoqAQC.
To conclude the discussion, it is possible to combine the adiabtic evolution with the circuit model to

build other universal architecture systems.

[1] T. Albash and D. A. Lidar, Rev. Mod. Phys. 90, 015002 (2018).
[2] D. Bacon and S. T. Flammia, Phys. Rev. Lett. 103, 120504 (2009), arXiv:0905.0901 [quant-ph] .

http://dx.doi.org/10.1103/RevModPhys.90.015002
http://dx.doi.org/10.1103/PhysRevLett.103.120504
http://arxiv.org/abs/0905.0901

	Contents
	Introduction
	Conditions and costs of AQC
	The adiabatic theorem
	Costs of AQC

	``Universality" of AQC and Hamiltonian complexity theory
	Equivalence to circuit model
	From CM to AQC
	From AQC to CM

	Universality limits
	Hamiltonian complexity theory
	Decision problems classes

	Theory of AQC applyed to algorithms
	Grover algorithm
	Deutsch-Josza algorithm
	Bernstein-Vazirani algorithm
	Glued trees problem
	Adiabatic PageRank algorithm

	Stoquastic AQC
	Simulation of stoquastic Hamiltonians

	Adiabatic Gate Teleportation
	Summery and concluding remarks
	References

